×

zbMATH — the first resource for mathematics

Software for multiplier ideals. (English) Zbl 1342.14123
The author describes a new software package, available as a library in Macaulay2, for determining multiplier ideals of special ideals. The computatation is based on combinatorial methods, that uses the Normaliz software and interface to Macaulay2 by W. Bruns and B. Ichim [J. Algebra 324, No. 5, 1098–1113 (2010; Zbl 1203.13033); J. Softw. Algebra Geom. 2, 15–19 (2010; Zbl 1311.13042)]. Due the specificity of the ideals, combinatorial methods allow computations of larger examples than can be handled by general methods.

MSC:
14Q99 Computational aspects in algebraic geometry
14F18 Multiplier ideals
13A15 Ideals and multiplicative ideal theory in commutative rings
13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] 10.1090/S0894-0347-09-00649-3 · Zbl 1210.14019
[2] 10.1007/s00209-004-0655-y · Zbl 1061.14055
[3] 10.1016/j.jalgebra.2010.01.031 · Zbl 1203.13033
[4] 10.2140/jsag.2010.2.15 · Zbl 1311.13042
[5] ; Bruns, Determinantal rings. Determinantal rings. Lecture Notes in Mathematics, 1327, (1988) · Zbl 1079.14533
[6] 10.1007/978-3-7643-8905-5
[7] 10.1007/s002220100121 · Zbl 1076.13501
[8] ; Frühbis-Krüger, The resolution of singular algebraic varieties, 269, (2014)
[9] 10.1093/acprof:oso/9780198570615.003.0005 · Zbl 1286.14026
[10] 10.1090/S0002-9947-01-02720-9 · Zbl 0979.13026
[11] 10.1007/978-3-642-18808-4
[12] 10.4134/JKMS.2008.45.2.467 · Zbl 1144.14300
[13] 10.1090/S0002-9947-06-03895-5 · Zbl 1126.14003
[14] 10.1353/ajm.2014.0040 · Zbl 1312.14113
[15] 10.1016/j.jpaa.2011.04.002 · Zbl 1233.14015
[16] 10.1007/s002220050276 · Zbl 0955.32017
[17] 10.1090/S0002-9939-07-09177-0 · Zbl 1157.14001
[18] 10.1090/S2330-1511-2014-00001-8 · Zbl 1339.14016
[19] 10.1017/CBO9780511800474 · Zbl 1180.93108
[20] ; Zwiernik, J. Mach. Learn. Res., 12, 3283, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.