×

zbMATH — the first resource for mathematics

Orthogonal polynomials of equilibrium measures supported on Cantor sets. (English) Zbl 1320.42019
Summary: The equilibrium measure of a compact set is a fundamental object in logarithmic potential theory. We compute numerically this measure and its orthogonal polynomials, when the compact set is a Cantor set, defined by an iterated function systems.
We first construct sequences of discrete measures, via the solution of large systems of non-linear equations, that converge weakly to the equilibrium measure. Successively, we compute their Jacobi matrices via standard procedures, enhanced for the scope. Numerical estimates of the convergence rate to the limit Jacobi matrix are provided, which show stability and efficiency of the whole procedure. As a companion result, we also compute Jacobi matrices in two other cases: equilibrium measures on finite sets of intervals, and balanced measures of iterated function systems.
These algorithms can reach large polynomial orders: therefore, we study the asymptotic behavior of the orthogonal polynomials and, by a natural extension of the concept of regular root asymptotics, we derive an efficient scheme for the computation of complex Green’s functions and of related conformal mappings.

MSC:
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
30C30 Schwarz-Christoffel-type mappings
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Akhiezer, N. I., The classical moment problem, (1965), Hafner New York, NY · Zbl 0135.33803
[2] Akhieser, N. I., General theory of the P. L. Tchebycheff polynomials, East J. Approx., 12, 211-259, (2006), Translated from the 1945 Russian original by B. Bojanov and G. Nikolov
[3] Geronimus, Ya. L., On certain asymptotic properties of polynomials, Mat. Sbornik N. S., 23, 77-88, (1948), (in Russian) · Zbl 0056.10303
[4] Stahl, H.; Totik, V., General orthogonal polynomials, (2010), Cambridge University Press Cambridge · Zbl 1187.33008
[5] Saff, E. B., Logarithmic potential theory with applications to approximation theory, Surv. Approx. Theory, 5, 165-200, (2010) · Zbl 1285.30020
[6] Ransford, T., Potential theory in the complex plane, (1995), Cambridge University Press Cambridge · Zbl 0828.31001
[7] Moran, P. A.P., Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc., 42, 15-23, (1946) · Zbl 0063.04088
[8] Hutchinson, J., Fractals and self-similarity, Indiana J. Math., 30, 713-747, (1981) · Zbl 0598.28011
[9] Barnsley, M. F.; Demko, S. G., Iterated function systems and the global construction of fractals, Proc. R. Soc. Lond. Ser. A, 399, 243-275, (1985) · Zbl 0588.28002
[10] Barnsley, M. F., Fractals everywhere, (1988), Academic Press New York, NY · Zbl 0691.58001
[11] Barnsley, M. F.; Elton, J.; Hardin, D. P., Recurrent iterated function systems. fractal approximation, Constr. Approx., 5, 3-31, (1989) · Zbl 0659.60045
[12] Gautschi, W., (Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation, (2004), Oxford Science Publications, Oxford University Press New York) · Zbl 1130.42300
[13] Diekema, E.; Koornwinder, T. H., Differentiation by integration using orthogonal polynomials, a survey, J. Approx. Theory, 164, 637-667, (2012) · Zbl 1259.65050
[14] Andrievskii, V. V., Constructive function theory on sets of the complex plane through potential theory and geometric function theory, Surv. Approx. Theory, 2, 1-52, (2006) · Zbl 1113.30003
[15] Mantica, G., Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D, 103, 576-589, (1997) · Zbl 1194.81085
[16] Mantica, G., Wave propagation in almost-periodic structures, Physica D, 109, 113-127, (1997) · Zbl 0925.58041
[17] Mantica, G., Fourier-Bessel functions of singular continuous measures and their many asymptotics, Electron. Trans. Numer. Anal., 25, 409-430, (2006), (Electronic) · Zbl 1160.42310
[18] Mantica, G.; Vaienti, S., The asymptotic behaviour of the Fourier transform of orthogonal polynomials I: Mellin transform techniques, Ann. Henri Poincaré, 8, 265-300, (2007) · Zbl 1215.42032
[19] Mantica, G.; Guzzetti, D., The asymptotic behaviour of the Fourier transform of orthogonal polynomials II: iterated function systems and quantum mechanics, Ann. Henri Poincaré, 8, 301-336, (2007) · Zbl 1215.42031
[20] Tcheremchantsev, S., Dynamical analysis of Schrödinger operators with growing sparse potentials, Comm. Math. Phys., 253, 221-252, (2005) · Zbl 1100.47027
[21] Cycon, H. L.; Froese, R. G.; Kirsch, W.; Simon, B., Schrödinger operators with application to quantum mechanics and global geometry, (1987), Springer-Verlag Berlin · Zbl 0619.47005
[22] Bellissard, J.; Lima, R.; Testard, D., Almost periodic Schrödinger operators, (Mathematics +Physics, Vol. 1, (1985), World Sci. Publishing Singapore), 1-64
[23] Last, Y., Exotic spectra: a review of barry simon’s central contributions, (Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proc. Sympos. Pure Math., vol. 76, (2007), Amer. Math. Soc. Providence, RI), 697-712 · Zbl 1129.81031
[24] Last, Y., Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal., 142, 406-445, (1996) · Zbl 0905.47059
[25] Avron, J.; Simon, B., Almost periodic Schrödinger operators. II. the integrated density of states, Duke Math. J., 50, 369-391, (1983) · Zbl 0544.35030
[26] Reed, M.; Simon, B., Methods of modern mathematical physics. IV. analysis of operators, (2004), Academic Press, Oxford University Press New York
[27] Geronimo, J. S.; Van Assche, W., Orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory, 46, 251-283, (1986) · Zbl 0604.42023
[28] Van Assche, W., Asymptotics for orthogonal polynomials and three-term recurrences, (Orthogonal Polynomials; Theory and Practice, NATO-ASI Series C, vol. 294, (1990)), 435-462
[29] Lubinsky, D., Asymptotics of orthogonal polynomials: some old, some new, some identities, Acta Appl. Math., 61, 207-256, (2000) · Zbl 0966.42014
[30] Damanik, D.; Simon, B., Jost function and Jost solution for Jacobi matrices, I, Invent. Math., 165, 1-50, (2006) · Zbl 1122.47029
[31] Simon, B., Ratio asymptotics and weak asymptotic measures for orthogonal polynomials on the real line, J. Approx. Theory, 126, 198-217, (2004) · Zbl 1043.42017
[32] Baker, G. A.; Bessis, D.; Moussa, P., A family of almost periodic Schrödinger operators, Physica A, 124, 61-77, (1984) · Zbl 0598.47054
[33] Bellissard, J.; Bessis, D.; Moussa, P., Chaotic states of almost-periodic Schrödinger operators, Phys. Rev. Lett., 49, 701-704, (1982)
[34] Barnsley, M. F.; Geronimo, J. S.; Harrington, A. N., Almost periodic Jacobi matrices associated with Julia sets for polynomials, Comm. Math. Phys., 99, 303-317, (1985) · Zbl 0574.58016
[35] Johnson, R. A., Cantor spectrum for the quasi-periodic Schrödinger equation, J. Differential Equations, 91, 88-110, (1991) · Zbl 0734.34074
[36] Süto, A., Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian, J. Stat. Phys., 56, 525-531, (1989) · Zbl 0712.58046
[37] Damanik, D.; Gorodetski, A., Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian, Comm. Math. Phys., 305, 221-277, (2011) · Zbl 1232.81016
[38] Fischer, H.-J., Recurrence coefficients of orthogonal polynomials with respect to some self-similar singular distributions, Z. Anal. Anwend., 14, 141-155, (1995) · Zbl 0820.42010
[39] Mantica, G., A Stieltjes technique for computing Jacobi matrices associated with singular measures, Constr. Approx., 12, 509-530, (1996) · Zbl 0878.42014
[40] Mantica, G., Direct and inverse computation of Jacobi matrices of infinite IFS, Numer. Math., 125, 705-731, (2013) · Zbl 1282.65050
[41] Kruger, H.; Simon, B., Cantor polynomials and some related classes of OPRL, J. Approx. Theory, 191, 71-93, (2015) · Zbl 1309.42034
[42] G. Mantica, Numerical computation of the isospectral torus of finite gap sets and of IFS Cantor sets, 2015. arXiv:1503.03801 [math.SP].
[43] Widom, H., Extremal polynomials associated with a system of curves in the complex plane, Adv. Math., 3, 127-232, (1969) · Zbl 0183.07503
[44] Nuttall, J.; Singh, S. R., Orthogonal polynomials and Padé approximants associated with a system of arcs, J. Approx. Theory, 21, 1-42, (1977) · Zbl 0355.30004
[45] Magnus, A., Recurrence coefficients for orthogonal polynomials on connected and nonconnected sets, (Padé Approximation and its Applications Proc. Conf., Univ. Antwerp, Antwerp, 1979, Lecture Notes in Math., vol. 765, (1979), Springer Berlin), 150-171
[46] Aptekarev, A. I., Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motion of Toda lattices, Math. USSR Sb., 53, 233-260, (1986) · Zbl 0608.42016
[47] Peherstorfer, F., Orthogonal and extremal polynomials on several intervals, J. Comput. Appl. Math., 48, 187-205, (1993) · Zbl 0790.42012
[48] Peherstorfer, F., Zeros of polynomials orthogonal on several intervals, Int. Math. Res. Not., 7, 361-385, (2003) · Zbl 1009.42018
[49] Peherstorfer, F., On Bernstein-szegö orthogonal polynomials on several intervals, SIAM J. Math. Anal., 21, 461-482, (1990) · Zbl 0688.42020
[50] Christiansen, J. S.; Simon, B.; Zinchenko, M., Finite gap Jacobi matrices, I. the isospectral torus, Constr. Approx., 32, 1-65, (2010) · Zbl 1200.42012
[51] Christiansen, J. S.; Simon, B.; Zinchenko, M., Finite gap Jacobi matrices, III. beyond the szegö class, Constr. Approx., 35, 259-272, (2012) · Zbl 1238.42009
[52] Janardhan, P.; Rosenblum, D.; Strichartz, R. S., Numerical experiments in Fourier asymptotics of Cantor measures and wavelets, Experiment. Math., 1, 249-273, (1992) · Zbl 0788.65129
[53] Heilman, S. M.; Owrutsky, P.; Strichartz, R. S., Orthogonal polynomials with respect to self-similar measures, Experiment. Math., 20, 238-259, (2011) · Zbl 1262.33010
[54] Strichartz, R. S., Analysis on fractals, Notices Amer. Math. Soc., 46, 10, 1199-1208, (1999) · Zbl 1194.58022
[55] Strichartz, R. S., Differential equations on fractals: A tutorial, (2006), Princeton University Press · Zbl 1190.35001
[56] Totik, V., Metric properties of harmonic measures, Mem. Am. Math. Soc., 184, 867, (2006) · Zbl 1107.31001
[57] Andrievskii, V. V., The highest smoothness of the Green function implies the highest density of a set, Ark. Mat., 42, 217-238, (2004) · Zbl 1061.31003
[58] Henrici, P., Applied and computational complex analysis, vol. 3, (1986), John Wiley New York
[59] Gutknecht, M. H., Solving theodorsen’s integral equation for conformal maps with the fast Fourier transform and various nonlinear iterative methods, Numer. Math., 36, 405-429, (1980-1981) · Zbl 0451.65101
[60] Reichel, L., On polynomial approximation in the complex plane with application to conformal mapping, Math. Comp., J. Comput. Appl. Math., 14, 125-142, (1986), Special issue on numerical conformal mapping
[61] Driscoll, T. A.; Trefethen, L. N., (Schwarz-Christoffel Mapping, Cambridge Monographs on Applied and Computational Mathematics, vol. 8, (2002), Cambridge University Press Cambridge)
[62] Embree, M.; Trefethen, L. N., Green’s functions for multiply connected domains via conformal mapping, SIAM Rev., 41, 745-761, (1999) · Zbl 0938.30003
[63] Shen, J.; Strang, G.; Wathen, A. J., The potential theory of several intervals and its applications, Appl. Math. Optim., 44, 67-85, (2001) · Zbl 0983.41006
[64] Saff, E. B.; Totik, V., Logarithmic potentials with external fields, (1997), Springer-Verlag Heidelberg · Zbl 0881.31001
[65] Olver, S., Computation of equilibrium measures, J. Approx. Theory, 163, 1185-1207, (2011) · Zbl 1241.31004
[66] Mantica, G., Computing the equilibrium measure of a system of intervals converging to a Cantor set, DRNA, 6, 51-61, (2013), (Electronic)
[67] Gragg, W. B.; Harrod, W. J., The numerically stable reconstruction of Jacobi matrices from spectral data, Numer. Math., 44, 317-335, (1984) · Zbl 0556.65027
[68] Fischer, H.-J., On generating orthogonal polynomials for discrete measures, Z. Anal. Anwend., 17, 183-205, (1998) · Zbl 0901.42017
[69] Thouless, D. J., A relation between the density of states and range of localization for one dimensional random systems, J. Phys. C: Solid State Phys., 5, 77-81, (1972)
[70] Delyon, F.; Souillard, B., The rotation number for finite difference operators and its properties, Comm. Math. Phys., 89, 415-426, (1983) · Zbl 0525.39003
[71] Johnson, R. A., A review of recent work on almost periodic differential and difference operators, Acta Appl. Math., 1, 241-261, (1983) · Zbl 0542.34007
[72] Jorgensen, P. E.T.; Kornelson, K. A.; Shuman, K. L., Iterated function systems, moments, and transformations of infinite matrices, Mem. Amer. Math. Soc., 213, (2011) · Zbl 1243.47033
[73] Mantica, G., Dynamical systems and numerical analysis: the study of measures generated by uncountable IFS, Numer. Algorithms, 55, 321-335, (2010) · Zbl 1200.65037
[74] Mantica, G., On the attractor of one-dimensional infinite iterated function systems, Int. J. Appl. Nonlinear Sci., 1, 87-99, (2013) · Zbl 1291.28010
[75] Julia, G., Mémoire sur l’iteration des fonctions rationelles, J. Math. Ser. 7 (Paris), 4, 47-245, (1918) · JFM 46.0520.06
[76] Fatou, P., Sur LES équations fonctionelles, Bull. Soc. Math. France, 47, 161-271, (1919), 48 33-94 (1920), 48 208-314 (1920) · JFM 47.0921.02
[77] Brolin, H., Invariant sets under iterations of rational functions, Ark. Mat., 6, 103-144, (1965) · Zbl 0127.03401
[78] Bessis, D.; Geronimo, J.; Moussa, P., Mellin transforms associated with Julia sets and physical applications, J. Stat. Phys., 34, 75-110, (1983) · Zbl 0602.58028
[79] Baribeau, L.; Brunet, D.; Ransford, T.; Rostand, J., Iterated function systems, capacity and green’s functions, Comput. Methods Funct. Theory, 4, 47-58, (2004) · Zbl 1052.31001
[80] Ransford, T.; Rostand, J., Computation of capacity, Math. Comp., 76, 1499-1520, (2007) · Zbl 1113.65026
[81] Akhieser, N. I., Orthogonal polynomials on several intervals, Dokl. Akad. Nauk SSSR, 134, 9-12, (1960), (in Russian); translated as Soviet Math. Dokl. 1 (1960) 989-992
[82] Geronimo, J. S.; Van Assche, W., Orthogonal polynomials on several intervals via a polynomial mapping, Trans. Amer. Math. Soc., 308, 559-581, (1988) · Zbl 0652.42009
[83] A. Magnus, Padé approximation to functions with branch points, Lecture notes 1998-1999. http://perso.uclouvain.be/alphonse.magnus/num3/m3xxx98.ps.
[84] Hardin, D. P.; Saff, E. B., Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc., 51, 1186-1194, (2004) · Zbl 1095.49031
[85] Laurie, D., Accurate recovery of recursion coefficients from Gaussian quadrature formulae, J. Comput. Appl. Math., 112, 165-180, (1999) · Zbl 0942.65022
[86] Golub, G. H.; Welsch, J. H., Calculation of Gauss quadrature rules, Math. Comp., 23, 221-230, (1969) · Zbl 0179.21901
[87] Brezinski, C.; Redivo Zaglia, M., Extrapolation methods: theory and practice, (1991), North Holland Amsterdam · Zbl 0744.65004
[88] Andrievskii, V. V., On the Green function for a complement of a finite number of real intervals, Constr. Approx., 20, 565-583, (2004) · Zbl 1066.30004
[89] Pommerenke, Ch., Boundary behaviour of conformal maps, (1992), Springer-Verlag Berlin, New York · Zbl 0762.30001
[90] Peherstorfer, F.; Yuditskii, P., Asymptotic behavior of polynomials orthonormal on a homogeneous set, J. Anal. Math., 89, 113-154, (2003) · Zbl 1032.42028
[91] Christiansen, J. S., Szegö’s theorem on parreau-Widom sets, Adv. Math., 229, 1180-1204, (2012) · Zbl 1235.42021
[92] Powell, M. J.D., On nonlinear optimization Since 1959, (The Birth of Numerical Analysis, (2010), World Sci. Publ. Hackensack, NJ), 141-160 · Zbl 1192.65084
[93] B.S. Garbow, K.E. Hillstrom, J.J. More, Argonne National Laboratory, MINPACK project, March 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.