×

Survey article: The real numbers – a survey of constructions. (English) Zbl 1386.26002

Summary: We present a comprehensive survey of constructions of the real numbers (from either the rationals or the integers) in a unified fashion, thus providing an overview of most (if not all) known constructions ranging from the earliest attempts to recent results, and allowing for a simple comparison-at-a-glance between different constructions.

MSC:

26A03 Foundations: limits and generalizations, elementary topology of the line
11A63 Radix representation; digital problems
00A05 Mathematics in general
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] R.D. Arthan, An irrational construction of \(\mathbb R\) from \(\mathbb Z\), in Theorem proving in higher order logics (Edinburgh, 2001), Lect. Notes Comp. Sci. 2152 , Springer, Berlin, 2001. · Zbl 1005.68534
[2] —-, The eudoxus real numbers , arXiv preprint math/0405454, 2004.
[3] P. Bachmann, Vorlesungen über die Theorie der Irrationalzahlen , Leipzig, 1892.
[4] V. Benci, M. Di Nasso and M. Forti, The eightfold path to nonstandard analysis , Nonstandard Meth. Appl. Math. 25 (2006). · Zbl 1104.03061
[5] N. Bourbaki, General topology , Chapters 1-4, Elements of mathematics , Springer Verlag, Berlin, 1998. · Zbl 0894.54001
[6] D.S. Bridges, A constructive look at the real number line , Springer, Berlin, 1994. · Zbl 0964.03534
[7] G. Cantor, Grundlagen einer allgemeinen mannigfaltigkeitslehre , in Mathematisch-philosophischer versuch in der lehre des unendlichen , Teubner, Leipzig, 1883. Cantor’s grundlagen , in Gesammelte Abhandlungen mathematischen und Philosophischen Inhalts , E. Zermelo, ed., Springer, Berlin, 1966 (in English).
[8] J.H. Conway, On numbers and games , IMA 6 (1976). · Zbl 0334.00004
[9] N.G. de Bruijn, Defining reals without the use of rationals , in Indagationes Mathematicae (Proceedings), Elsevier 79 (1976), 100-108. · Zbl 0324.10054
[10] R. Dedekind, Stetigkeit und irrationale zahlen , Braunschweig, Vieweg, 1872. R. Dedekind, Gesarnrnelte mathematische Werke , R. Fricke, E. Noether and O. Ore, eds., Braunschweig, Vieweg 1932 (1930), 1-2.
[11] J. Douglas, R. Kirollos, B. Odgers, R. Street and N.H. Vo, The efficient real numbers , Macquarie University, http://maths. mq. edu. au/street/EffR.pdf, 2004.
[12] H-D. Ebbinghaus, M. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel and R. Remmert, Numbers , Grad. Texts Math. 123 (1990). · Zbl 0705.00001
[13] F. Faltin, N. Metropolis, B. Ross and G-C. Rota, The real numbers as a wreath product , Adv. Math. 16 (1975), 278-304. · Zbl 0314.12101
[14] R. Goldblatt, Lectures on the hyperreals : An introduction to nonstandard analysis , Springer Sci. Bus. Media 188 (1998). · Zbl 0911.03032
[15] T. Gowers, Constructing the reals as infinite decimals , https:// www.dpmms.cam.ac.uk/ wtg10/decimals.html.
[16] T. Grundhöfer, Describing the real numbers in terms of integers , Arch. Math. 85 (2005), 79-81. · Zbl 1098.16017
[17] J. Harrison, Constructing the real numbers in hol , Formal Meth. Syst. Design 5 (1994), 35-59. · Zbl 0809.68102
[18] —-, Theorem proving with the real numbers , Springer-Verlag, London, 1998. · Zbl 0932.68099
[19] S. Ikeda, A new construction of the real numbers by alternating series , arXiv preprint arXiv: · Zbl 1321.11016
[20] K.U. Katz and M.G. Katz, Stevin numbers and reality , Found. Sci. 17 (2012), 109-123. · Zbl 1275.01016
[21] A. Knopfmacher and J. Knopfmacher, A new construction of the real numbers \((\)via infinite products\()\) , Nieuw Arch. Wisk. 5 (1987), 19-31. · Zbl 0624.10007
[22] —-, Two concrete new constructions of the real numbers , Rocky Mountain J. Mathematics 18 (1988), 813-824. · Zbl 0677.10006
[23] —-, Two constructions of the real numbers via alternating series , Inter. J. Math. Math. Sci. 12 (1989), 603-613. · Zbl 0683.10008
[24] E.A. Maier and D. Maier, A construction of the real numbers , Two-year College Math. Journal (1973), 31-35.
[25] A. Pintilie, A construction without factorization for the real numbers , LIBERTAS MATH. 1-31 (1988), 155-160. · Zbl 0661.26003
[26] G.J. Rieger, A new approach to the real numbers \((\)motivated by continued fractions\()\) , AOh. Brauceig. Wis. Ge 33 (1982), 205-217. · Zbl 0513.10009
[27] P. Shiu, A new construction of the real numbers , The Math. Gazette (1974), 39-46. · Zbl 0276.26002
[28] P. Singthongla and N.R. Kanasri, Sel series expansion and generalized model construction for the real number system via series of rationals , Inter. J. Math. Math. Sci. 2014 , 2014. · Zbl 1323.11008
[29] R. Street, An efficient construction of the real numbers , Gazette Austral. Math. Soc. 12 (1985), 57-58.
[30] —-, Update on the efficient reals , preprint, 2003.
[31] J.C. Tweddle, Weierstrass’s construction of the irrational numbers , Math. Semesterber. 58 (2011), 47-58. · Zbl 1216.01009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.