×

zbMATH — the first resource for mathematics

On the cuspidal cohomology of arithmetic subgroups of SL(2n) and the first Betti number of arithmetic 3-manifolds. (English) Zbl 0648.22007
In the last decade much attention has been devoted to the cohomology of arithmetic subgroups of SL(2,k) when k is a number field with nice arithmetic properties. It was in particular shown that cuspidal cohomology exists if the arithmetic subgroup is deep enough.
In this note the author proves the existence of cuspidal cohomology for deep arithmetic subgroups of SL(2,k) for any number field k. He then uses this result to show that a compact, hyperbolic 3-manifold \(Y=\Gamma \setminus SL(2,{\mathbb{C}})/SU(2)\) with arithmetic \(\Gamma\) has a finite covering \(\tilde Y\) with \(H^ 1(\tilde Y,{\mathbb{C}})\neq 0\). In the last paragraph he shows how to extend his construction of cuspidal cohomology to arithmetic subgroups of SL(2n,k), where k is again any number field.
Reviewer: B.Speh

MSC:
22E40 Discrete subgroups of Lie groups
20G10 Cohomology theory for linear algebraic groups
20G30 Linear algebraic groups over global fields and their integers
57T10 Homology and cohomology of Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Arthur and L. Clozel, Base change for \(GL(n)\) , · Zbl 0682.10022
[2] E. Artin and J. Tate, Class Field Theory , Benjamin, 1968. · Zbl 0176.33504
[3] A. Borel, Commensurability classes and volumes of hyperbolic \(3\)-manifolds , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1-33. · Zbl 0473.57003 · numdam:ASNSP_1981_4_8_1_1_0 · eudml:83853
[4] A. Borel and H. Jacquet, Automorphic forms and automorphic representations , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Symp. Pure Math. XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189-207. · Zbl 0414.22020
[5] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups , Annals of Mathematics Studies, vol. 94, Princeton Univ. Press, Princeton, N.J., 1980. · Zbl 0443.22010
[6] A. Borel, Regularization theorems in Lie algebra cohomology. Applications , Duke Math. J. 50 (1983), no. 3, 605-623. · Zbl 0528.22010 · doi:10.1215/S0012-7094-83-05028-7
[7] P. Delorme Thèse, Univ. Paris-VI, 1978.
[8] M. Duflo, Représentations irreductibles des groupes semi-simples complexes , Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973-75), Lecture Notes in Math., vol. 497, Springer, Berlin, 1975, pp. 26-88. · Zbl 0315.22008
[9] T. J. Enright, Relative Lie algebra cohomology and unitary representations of complex Lie groups , Duke Math. J. 46 (1979), no. 3, 513-525. · Zbl 0427.22010 · doi:10.1215/S0012-7094-79-04626-X
[10] H. Jacquet and R. P. Langlands, Automorphic forms on \(\mathrm GL(2)\) , Springer-Verlag, Berlin, 1970. · Zbl 0236.12010 · doi:10.1007/BFb0058988
[11] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations I , Amer. J. Math. 103 (1981), no. 3, 499-558. JSTOR: · Zbl 0473.12008 · doi:10.2307/2374103 · links.jstor.org
[12] J.-P. Labesse and J. Schwermer, On liftings and cusp cohomology of arithmetic groups , Invent. Math. 83 (1986), no. 2, 383-401. · Zbl 0581.10013 · doi:10.1007/BF01388968 · eudml:143317
[13] B. Speh, Unitary representations of \(\mathrm Gl(n,\,\mathbf R)\) with nontrivial \((\mathfrak g,\,K)\)-cohomology , Invent. Math. 71 (1983), no. 3, 443-465. · Zbl 0505.22015 · doi:10.1007/BF02095987 · eudml:142998
[14] A. Weil, On a certain type of characters of the idèle-class group of an algebraic number-field , Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, Science Council of Japan, Tokyo, 1956, Oeuvres Scientifiques, II, p. 255-61, pp. 1-7. · Zbl 0073.26303
[15] B. Dodson, Solvable and nonsolvable CM-fields , Amer. J. Math. 108 (1986), no. 1, 75-93 (1986). JSTOR: · Zbl 0586.12003 · doi:10.2307/2374469 · links.jstor.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.