×

Existence of \(C^{\infty}\) local solutions for the Monge-Ampère equation. (English) Zbl 0648.35016

The authors prove the existence of \(C^{\infty}\) convex solutions to the Monge-Ampère equation \(\det (u_{ij})=f(y,u,\nabla u)\) in a neighbourhood of \(y^ 0\) in \({\mathbb{R}}^ n,\) assuming that \(f\geq 0\) near \((y^ 0,u^ 0,p^ 0)\) and that one of the following conditions is satisfied:
(I) There exists k such that \((\partial^{\alpha}f)(y^ 0,u^ 0,p^ 0)=0\) if \(| \alpha | <k\), but \((\partial^{\beta}_ yf)(y^ 0,u^ 0,p^ 0)\neq 0\) for some \(\beta\) with \(| \beta | =k.\)
(II) \(f(y,u,p)=K(y)g(y,u,p)\) with K(y \(0)=0\), \(K\geq 0\), \(g>0\), and \(K^{-1}(0)\) is contained, near \(y^ 0\), in the union of a finite number of \(C^ 1\) hypersurfaces.
The authors use a Nash-Moser method together with Bony paradifferential calculus.
Reviewer: P.Godin

MSC:

35G20 Nonlinear higher-order PDEs
35A07 Local existence and uniqueness theorems (PDE) (MSC2000)
35B65 Smoothness and regularity of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Bers, L., John, F., Schechter, M.: Partial differential equations. New York: Intersciences Publishers 1964 · Zbl 0126.00207
[2] Bony, J-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires. Ann. Sci. Ec. Norm. Super., IV. Ser.14, 209-246 (1981)
[3] Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for non linear second order elliptic equations I: Monge-Ampère equations. Commun. Pure Appl. Math.39, 369-402 (1984) · Zbl 0598.35047 · doi:10.1002/cpa.3160370306
[4] Jiaxing, Hong: Surface in ?3 with prescribed Gauss curvature. Chin. Ann. Math. (in press) (1987) · Zbl 0636.53004
[5] Lin, C-S.: The local isometric embedding in ?3 of 2-dimensional Riemannian manifolds with non negative curvature. J. Differ. Equations21, 213-230 (1985) · Zbl 0584.53002
[6] Lin, C-S.: The local Isometric embedding in ?3 of two dimensional Riemannian Manifolds with Gaussian curvature changing sign clearly. Comm. Pure Appl. Math.39, 867-887 (1986) · Zbl 0612.53013 · doi:10.1002/cpa.3160390607
[7] Moser, J.: A new technique for the construction of solutions of non linear partial differential equations. Proc. Natl. Acad. Sci. USA47, 1824-1831 (1961) · Zbl 0104.30503 · doi:10.1073/pnas.47.11.1824
[8] Oleinik, O.A., Radkevitch, E.V.: Second order equations with non negative characteristic form. New York: Plenum Press
[9] Xu, C.J.: Régularité des solutions des e.d.p. non linéaires. C.R. Acad. Sci., Paris, Ser.300, 267-270 (1985)
[10] Zuily, C.: Sur la régularité des solutions non strictement convexes de l’équation de Monge-Ampére réelle. Am. J. Math. 1987 (In press)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.