×

zbMATH — the first resource for mathematics

Pointwise convergence of some boundary element methods. II. (English) Zbl 0648.65092
[For part I see ibid. 19, 65-87 (1985; Zbl 0579.65147.]
This paper deals with the approximate solution of strongly elliptic boundary integro-differential equations by the finite element Galerkin method. It is shown that for operators of positive order the discrete solutions converge uniformly with almost the same optimal order as is known for their convergence in the mean-square sense, yielding pointwise convergence estimates for the solutions of spline collocation boundary elements for two-dimensional problems.
Reviewer: N.F.F.Ebecken

MSC:
65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] M. S. BOU EL SEOUD, Kollokationsmethode für schwach singuläre Inté-gralgleichungen erster Art. Z. Angew. Math. Mech. 59, T45-T47 (1979). Zbl0412.65062 · Zbl 0412.65062
[2] M. S. AGRANOVICH, Spectral properties of diffraction problems. In : The General Method of Natural Vibrations in Diffraction Theory. (Russian)(N. N. Voitovic, K. Z. Katzenellenbaum and A. N. Sivov) Izdat. Nauka, Mos-cow 1977. MR484012
[3] M. A. ALEKSIDZE, The Solution of Boundary Value Problems with the Method of Expansion with Respect to Nonorthonormal Functions. Nauka, Moscow 1978 (Russian). MR527813 · Zbl 0509.65054
[4] D. N. ARNOLD and W. L. WENDLAND, On the asymptotic convergence of collocation methods. Math. Comp. 41, 349-381 (1983). Zbl0541.65075 MR717691 · Zbl 0541.65075
[5] D. N. ARNOLD and W. L. WENDLAND, The convergence of spline collocationfor strongly elliptic equations on curves. Numer. Math. 47, 317-341 (1985). Zbl0592.65077 MR808553 · Zbl 0592.65077
[6] I. BABUSKA and A. K. ziz, Survey lectures on the mathematical foundations of finite element method. In The Mathematical Foundations o f the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), pp. 3-359, Academic Press, New York 1972. Zbl0268.65052 MR421106 · Zbl 0268.65052
[7] M. COSTABEL and E. STEPHAN, The normal derivative of the double layer potential on polygons and Galerkin approximation. Applicable Anal. 16, 205-288 (1983). Zbl0508.31003 MR712733 · Zbl 0508.31003
[8] COSTABEL and E. STEPHAN, A direct boundary integral equation method for transmission problems. J. Appl. Anal. Appl. 106, 367-413 (1985). Zbl0597.35021 MR782799 · Zbl 0597.35021
[9] M. COSTABEL and W. L. WENDLAND, Strong ellipticity of boundary integral operators. J. Reine Angew. Math. 372, 34-63 (1986). Zbl0628.35027 MR863517 · Zbl 0628.35027
[10] P. FILIPPI, Layer potentials and acoustic diffraction. J. Sound and Vibration 54, 473-500 (1977). Zbl0368.76073 · Zbl 0368.76073
[11] J. FREHSE and R. RANNACHER, Eine L’-Fehlerabschätzung für diskrete Grundlösungen in der Mehtode der finiten Elemente. In : Finite Elemente, Tagungsband Bonn. Math. Schr. 89, 92-114 (1976). Zbl0359.65093 MR471370 · Zbl 0359.65093
[12] J. GIROIRE and J. C. NEDELEC, Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comp. 32, 973-990 (1978). Zbl0405.65060 MR495015 · Zbl 0405.65060
[13] T. HA DUONG, A finite element method for the double layer potential solutions of the Neumann exterior problem. Math. Meth. Appl. Sci. 2, 191-208 (1980). Zbl0437.65083 MR570403 · Zbl 0437.65083
[14] F. K. HEBEKER, An integral equation of the first kind for a free boundary value problem of the stationary Stokes equations. Math. Meth. Appl. Sci. 9, 550-575 (1987). Zbl0656.76031 MR1200365 · Zbl 0656.76031
[15] L. HORMANDER, Pseudo-differential operators and non-elliptic boundary problems. Annals Math. 83, 129-209 (1966). Zbl0132.07402 MR233064 · Zbl 0132.07402
[16] H. P. HOIDIN, Die Kollokationsmethode angewandt auf die Symmsche Integralgleichung. Doctoral Thesis, EHT Zürich, Switzerland 1983. Zbl0579.65142 · Zbl 0579.65142
[17] G. C. HSIA and W. L. WENDLAND, A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58, 449-481 (1977). Zbl0352.45016 MR461963 · Zbl 0352.45016
[18] G. C. HSIAO and W. L. WENDLAND, The Aubin-Nitsche lemma for integral equations. Journal of Integral Equations 3, 299-315 (1981). Zbl0478.45004 MR634453 · Zbl 0478.45004
[19] F. NATTERER, Über die punktweise Konvergenz finiter Elemente. Number. Math. 25, 67-77 (1975). Zbl0331.65073 MR474884 · Zbl 0331.65073
[20] J. C. NEDELEC, Approximation des équations intégrales en mécanique et en physique. Lecture Notes, Centre de Math. Appl. Ecole Polytechnique, 91128 Palaiseau, France, 1977.
[21] J. C. NEDELEC, Approximation par potentiel de double couche du problème de Neumann extérieur. C. R. Acad. Sci. Paris, Ser. A 286, 616-619 (1978). Zbl0375.65047 MR477403 · Zbl 0375.65047
[22] J. C. NEDELEC, Integral equations with non integrable kernels. Integral Equations Operator Theory 5, 562-572 (1982). Zbl0479.65060 MR665149 · Zbl 0479.65060
[23] J. A. NITSCHE, \(L_\infty\)-convergence of finite element approximation. Second Conference on Finite Elements, Rennes, France, 1975. Zbl0362.65088 MR568857 · Zbl 0362.65088
[24] P. M. PRENTER, Splines and Variational Methods. John Wiley & Sons, New York 1975. Zbl0344.65044 MR483270 · Zbl 0344.65044
[25] S. PRÖSSDORF and G. SCHMIDT, A finite elementcollocation method for singular integral equations. Math. Nachr, 100, 33-60 (1981). Zbl0543.65089 MR632620 · Zbl 0543.65089
[26] R. RANNACHER, Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem. Manuscripta Math. 19, 401-416 (1976). Zbl0383.65061 MR423841 · Zbl 0383.65061
[27] R. RANNACHER, On non conforming and mixed finite element methods for plate bending problems. The linear case. R.A.I.R.O. Anal. Numér. 13, 369-387 (1979). Zbl0425.35042 MR555385 · Zbl 0425.35042
[28] R. RANNACHER and R. SCOTT, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437-445 (1982). Zbl0483.65007 MR645661 · Zbl 0483.65007
[29] R. RANNACHER and W. L. WENDLAND, On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order. Math. Modelling and Numer. Analysis 19, 65-88 (1985). Zbl0579.65147 MR813689 · Zbl 0579.65147
[30] A. H. SCHATZ and L. B. WAHLBIN, Maximum norm error estimates in the finite element method for Poisson’s equation on plante domains with corner. Math. Comp. 32, 73-109 (1978). Zbl0382.65058 MR502065 · Zbl 0382.65058
[31] G. SCHMIDT, The convergence of Galerkin and collocation methods with splines for pseudodifferential equations on closed curves. Z. Anal. Anwendungen 3, 371-384 (1984). Zbl0551.65077 MR780180 · Zbl 0551.65077
[32] R. SCOTT, Optimal \(L^\infty\)-estimatees for the finite element method on irregular meshes. Math. Comp. 30, 681-697 (1976). Zbl0349.65060 MR436617 · Zbl 0349.65060
[33] E. STEPHAN and W. L. WENDLAND, Remarks to Galerkin and least squares methods with finite elements for general elliptic problems. Manuscripta Geodaetica 1, 93-123 (1976) and Springer Lecture Notes in Math. 564, 461-471 (1976). Zbl0353.65067 MR520343 · Zbl 0353.65067
[34] G. STRANG, Approximation in the finite element method. Num. Math. 19 (1972). Zbl0221.65174 MR305547 · Zbl 0221.65174
[35] M. E. TAYLOR, Pseudodifferential Operators. Princeton University Press,Princeton, New Jersey 1981. Zbl0453.47026 MR618463 · Zbl 0453.47026
[36] F. TREVES, Pseudodifferential Operators. Plenum Press, New York, London 1980. MR597144
[37] J. O. WATSON, Advanced implementation of the boundary element method fortwo- and three-dimensional elastostatics. In : Developments in Boundary Element Methods. I. Banerjee and R. Butterfield (eds.), Appl. Sciences Publ. LTD, London, 31-63 (1979). Zbl0451.73075 · Zbl 0451.73075
[38] W. L. WENDLAND, Boundary element methods and their asymptotic conver-gence. . In : Theoretical Acoustics and Numerical techniques. P. Filippi (éd.), CISM Courses and Lectures No.277, Springer-Verlag, Wien, New York, 135-216 (1983). Zbl0618.65109 MR762829 · Zbl 0618.65109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.