zbMATH — the first resource for mathematics

Numerical methods for parameter identification in stationary radiative transfer. (English) Zbl 1333.49050
Summary: We investigate the identification of scattering and absorption rates in the stationary radiative transfer equation. For a stable solution of this parameter identification problem, we consider Tikhonov regularization in Banach spaces. A regularized solution is then defined via an optimal control problem constrained by an integro-partial differential equation. By establishing the weak continuity of the parameter-to-solution map, we are able to ensure the existence of minimizers and thus the well-posedness of the regularization method. In addition, we prove certain differentiability properties, which allow us to construct numerical algorithms for finding the minimizers and to analyze their convergence. Numerical results are presented to support the theoretical findings and illustrate the necessity of the assumptions made in the analysis.

49N45 Inverse problems in optimal control
49M30 Other numerical methods in calculus of variations (MSC2010)
49J20 Existence theories for optimal control problems involving partial differential equations
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
35R09 Integral partial differential equations
35Q93 PDEs in connection with control and optimization
Full Text: DOI arXiv
[1] Acar, R; Vogel, CR, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10, 1217-1229, (1994) · Zbl 0809.35151
[2] Arridge, SR, Optical tomography in medical imaging, Inverse Problems, 15, r41-r93, (1999) · Zbl 0926.35155
[3] Bakushinsky, A.B., Kokurin, M.Y.: Iterative Methods for Approximate Solution of Inverse Problems, Mathematics and its Applications, vol. 577. Springer, Dordrecht (2004) · Zbl 1070.65038
[4] Bal, G; Censor, ALY (ed.); Jiang, M (ed.), Inverse transport from angularly averaged measurements and time harmonic isotropic sources, 19-35, (2008), Italy
[5] Bal, G; Jollivet, A, Stability estimates in stationary inverse transport, Inverse Probl. Imaging, 2, 427-454, (2008) · Zbl 1168.35446
[6] Case, K.M., Zweifel, P.F.: Linear Transport Theory. Addison-Wesley Publishing Co., Reading (1967) · Zbl 0162.58903
[7] Cercignani, C.: The Boltzmann Equation and Its Applications. Springer-Verlag, Berlin (1988) · Zbl 0646.76001
[8] Chandrasekhar, S.: Radiative Transfer. Dover Publications, Inc., New York (1960) · Zbl 0037.43201
[9] Choulli, M; Stefanov, P, An inverse boundary value problem for the stationary transport equation, Osaka J. Math., 36, 87-104, (1998) · Zbl 0998.35064
[10] Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, Evolution Problems II, vol. 6. Springer, Berlin (1993) · Zbl 0802.35001
[11] Dierkes, T; Dorn, O; Natterer, F; Palamodov, V; Sielschott, H, Fréchet derivatives for some bilinear inverse problems, SIAM J. Appl. Math., 62, 2092-2113, (2002) · Zbl 1010.35115
[12] Dorn, O, A transport-backtransport method for optical tomography, Inverse Problems, 14, 1107-1130, (1998) · Zbl 0992.78002
[13] Egger, H; Schlottbom, M, Efficient reliable image reconstruction schemes for diffuse optical tomography, Inverse Problem Sci. Eng., 19, 155-180, (2011) · Zbl 1241.94009
[14] Egger, H., Schlottbom, M.: A mixed variational framework for the radiative transfer equation. Math. Models Methods Appl. Sci. 03(22), 1150,014 (2012). doi:10.1142/S021820251150014X. · Zbl 1247.65163
[15] Egger, H., Schlottbom, M.: An \({L}^p\) theory for stationary radiative transfer. Appl. Anal. (2013). doi:10.1080/00036811.2013.826798 · Zbl 1292.35091
[16] Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, Mathematics and its Applications, vol. 375. Kluwer Academic Publishers Group, Dordrecht (1996) · Zbl 0859.65054
[17] Engl, HW; Kunisch, K; Neubauer, A, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems, Inverse Problems, 5, 523-540, (1989) · Zbl 0695.65037
[18] Golse, F., Lions, P.L., Perthame, B., Sentis, R.: Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76(1), 110-125 (1988). doi:10.1016/0022-1236(88)90051-1. · Zbl 0652.47031
[19] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, vol. 23. Springer Science + Business, Media B.V., New York (2009) · Zbl 1167.49001
[20] Hofmann, B., Scherzer, O.: Factors influencing the ill-posedness of nonlinear problems. Inverse Problems 10(6), 1277 (1994). http://stacks.iop.org/0266-5611/10/i=6/a=007 · Zbl 0809.35157
[21] Hofmann, B; Kaltenbacher, B; Pöschl, C; Scherzer, O, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Problem, 23, 987-1010, (2007) · Zbl 1131.65046
[22] Kaltenbacher, B., Hofmann, B.: Convergence rates for the iteratively regularized Gauß-Newton method in Banach spaces. Inverse Problems 26(3), 035,007 (2010). http://stacks.iop.org/0266-5611/26/i=3/a=035007 · Zbl 1204.65060
[23] Kaltenbacher, B; Neubauer, A, Convergence of projected iterative regularization methods for nonlinear problems with smooth solutions, Inverse Problems, 22, 1105-1119, (2006) · Zbl 1095.65048
[24] Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularized Methods for Nonlinear Ill-Posed Problems, Radon Series on Computational and Applied Mathematics, vol. 6. Walter de Gruyter, Berlin (2008) · Zbl 1145.65037
[25] Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Problems 25, 065,003 (2009). · Zbl 1010.35115
[26] Klose, AD; Hielscher, AH, Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer, Med. Phys., 26, 1698-1707, (1999)
[27] Kondratyev, K.Y.: Radiation in the Atmosphere. Academic Press, San Diego (1969)
[28] Langmore, I, The stationary transport problem with angularly averaged measurements, Inverse Problems, 24, 015024, (2008) · Zbl 1154.35468
[29] Lewis, E.E., Miller Jr, W.F.: Computational Methods of Neutron Transport. Wiley, New York (1984)
[30] McDowall, S., Stefanov, P., Tamasan, A.: Stability of the gauge equivalent classes in inverse stationary transport. Inverse Problems 26(2), 025,006 (2010). http://stacks.iop.org/0266-5611/26/i=2/a=025006 · Zbl 1187.35281
[31] Mokthar-Kharroubi, M.: Mathematical Topics in Neutron Transport Theory. World Scientific, Singapore (1997) · Zbl 0997.82047
[32] Peraiah, A.: An Introduction to Radiative Transfer—Methods and Applications in Astrophysics. Cambridge University Press, Cambridge (2004) · Zbl 0990.85001
[33] Ramlau, R, TIGRA—an iterative algorithm for regularizing nonlinear ill-posed problems, Inverse Problems, 19, 433-465, (2003) · Zbl 1029.65059
[34] Resmerita, E.: Regularization of ill-posed problems in Banach spaces: convergence rates. Inverse Problems 21(4), 1303 (2005). http://stacks.iop.org/0266-5611/21/i=4/a=007 · Zbl 1082.65055
[35] Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, New York (2009) · Zbl 1177.68245
[36] Schlottbom, M.: On forward and inverse models in optical tomography. Ph.D. thesis, RWTH Aachen (2011). http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3857/ · Zbl 0998.35064
[37] Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.S.: Regularization Methods in Banach Spaces. De Gruyter, Berlin (2012) · Zbl 1259.65087
[38] Tang, J., Han, W., Han, B.: A theoretical study for RTE-based parameter identification problems. Inverse Problems 29(9), 095,002 (2013). http://stacks.iop.org/0266-5611/29/i=9/a=095002 · Zbl 1287.45006
[39] Wright, S; Schweiger, M; Arridge, SR, Reconstruction in optical tomography using \(P_N\) approximations, Meas. Sci. Technol., 18, 79-86, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.