×

zbMATH — the first resource for mathematics

On algebraic functions integrable in finite terms. (English. Russian original) Zbl 1327.30047
Funct. Anal. Appl. 49, No. 1, 50-56 (2015); translation from Funkts. Anal. Prilozh. 49, No. 1, 62-70 (2015).
Soit \(X\) une surface de Riemann. Cet article identifie et étudie le sous-espace vectoriel des différentielles méromorphes de \(X\) qui s’intègrent en une fonction élémentaire généralisée.

MSC:
30F30 Differentials on Riemann surfaces
34M15 Algebraic aspects (differential-algebraic, hypertranscendence, group-theoretical) of ordinary differential equations in the complex domain
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. G. Khovanskii, Topological Galois Theory. Solvability and Unsolvability of Equations in Finite Terms, Springer Monographs in Mathematics, Springer-Verlag, Berlin-Heidelberg, 2014. · Zbl 1331.12001
[2] J. Davenport, On the Integration of Algebraic Functions, Lecture Notes in Computer Science, vol. 102, Springer-Verlag, Berlin-New York, 1981. · Zbl 0471.14009
[3] Singer, M F, Formal solutions of differential equations, J. Symbolic Comput., 10, 59-94, (1990) · Zbl 0727.12011
[4] Grushevsky, S; Krichever, I, The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces and the geometry of the moduli space of pointed Riemann surfaces, 111-129, (2009), Somerville, MA · Zbl 1213.14055
[5] Krichever, I; Zakharov, D, A note on critical points of soliton equations, Anal. Math. Phys., 1, 15-35, (2011)
[6] S. Grushevsky and I. Krichever, Foliations on the Moduli Space of Curves, Vanishing in Cohomology, and Calogero-Moser Curves, http://arxiv.org/abs/1108.4211. · Zbl 1337.32003
[7] Krichever, I M, Real normalized differentials and arbarello’s conjecture, Funkts. Anal. Prilozhen., 46, 37-51, (2012) · Zbl 1278.30041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.