×

zbMATH — the first resource for mathematics

On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains. (English) Zbl 1363.65157
Summary: The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than \(p\) with an integer \(p\geq 1\). In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Akrivis, G.; Makridakis, C., Galerkin time-stepping methods for nonlinear parabolic equations, M2AN, Math. Model. Numer. Anal., 38, 261-289, (2004) · Zbl 1085.65094
[2] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779, (2002) · Zbl 1008.65080
[3] Babuška, I.; Baumann, C. E.; Oden, J. T., A discontinuous hp finite element method for diffusion problems: 1-D analysis, Comput. Math. Appl., 37, 103-122, (1999) · Zbl 0940.65076
[4] M. Balazsova, M. Feistauer, M. Hadrava, A. Kosik: On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems. To appear in J. Numer. Math. · Zbl 1327.65168
[5] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279, (1997) · Zbl 0871.76040
[6] Baumann, C. E.; Oden, J. T., A discontinuous hp finite element method for the Euler and Navier-Stokes equations, Int. J. Numer. Methods Fluids, 31, 79-95, (1999) · Zbl 0985.76048
[7] Boffi, D.; Gastaldi, L.; Heltai, L., Numerical stability of the finite element immersed boundary method, Math. Models Methods Appl. Sci., 17, 1479-1505, (2007) · Zbl 1186.76661
[8] Bonito, A.; Kyza, I.; Nochetto, R. H., Time-discrete higher-order ALE formulations: stability, SIAM J. Numer. Anal., 51, 577-604, (2013) · Zbl 1267.65114
[9] Brezzi, F.; Manzini, G.; Marini, D.; Pietra, P.; Russo, A., Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Partial Differ. Equations, 16, 365-378, (2000) · Zbl 0957.65099
[10] Česenek, J.; Feistauer, M., Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion, SIAM J. Numer. Anal., 50, 1181-1206, (2012) · Zbl 1312.65157
[11] Česenek, J.; Feistauer, M.; Horaček, J.; Kučera, V.; Prokopova, J., Simulation of compressible viscous flow in time-dependent domains, Appl. Math. Comput., 219, 7139-7150, (2013) · Zbl 1426.76233
[12] Česenek, J.; Feistauer, M.; Kosik, A., DGFEM for the analysis of airfoil vibrations induced by compressible flow, ZAMM, Z. Angew. Math. Mech., 93, 387-402, (2013) · Zbl 1277.74026
[13] Chrysafinos, K.; Walkington, N. J., Error estimates for the discontinuous Galerkin methods for parabolic equations, SIAM J. Numer. Anal., 44, 349-366, (2006) · Zbl 1112.65086
[14] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 173-261, (2001) · Zbl 1065.76135
[15] Dolejši, V., On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations, Int. J. Numer. Methods Fluids, 45, 1083-1106, (2004) · Zbl 1060.76570
[16] V. Dolejši, M. Feistauer: Discontinuous Galerkin Method-Analysis and Applications to Compressible Flow. Springer, Heidelberg, 2015. · Zbl 1401.76003
[17] Dolejši, V.; Feistauer, M.; Hozman, J., Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes, Comput. Methods Appl. Mech. Eng., 196, 2813-2827, (2007) · Zbl 1121.76033
[18] Donea, J.; Giuliani, S.; Halleux, J. P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 33, 689-723, (1982) · Zbl 0508.73063
[19] K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Computational differential equations. Cambridge Univ. Press, Cambridge, 1996. · Zbl 0946.65049
[20] Eriksson, K.; Johnson, C., Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal., 28, 43-77, (1991) · Zbl 0732.65093
[21] Estep, D.; Larsson, S., The discontinuous Galerkin method for semilinear parabolic problems, RAIRO, Modélisation Math. Anal. Numér., 27, 35-54, (1993) · Zbl 0768.65065
[22] M. Feistauer, J. Felcman, I. Straškraba: Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2003. · Zbl 1028.76001
[23] Feistauer, M.; Hajek, J.; Švadlenka, K., Space-time discontinuous Galerkin method for solving nonstationary convection-diffusion-reaction problems, Appl. Math., Praha, 52, 197-233, (2007) · Zbl 1164.65469
[24] Feistauer, M.; Hasnedlova-Prokopova, J.; Horaček, J.; Kosik, A.; Kučera, V., DGFEM for dynamical systems describing interaction of compressible fluid and structures, J. Comput. Appl. Math., 254, 17-30, (2013) · Zbl 1290.65089
[25] Feistauer, M.; Horaček, J.; Kučera, V.; Prokopova, J., On numerical solution of compressible flow in time-dependent domains, Math. Bohem., 137, 1-16, (2012) · Zbl 1249.65196
[26] Feistauer, M.; Kučera, V.; Najzar, K.; Prokopova, J., Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math., 117, 251-288, (2011) · Zbl 1211.65125
[27] Feistauer, M.; Kučera, V.; Prokopova, J., Discontinuous Galerkin solution of compressible flow in time-dependent domains, Math. Comput. Simul., 80, 1612-1623, (2010) · Zbl 1425.76212
[28] Formaggia, L.; Nobile, F., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math., 7, 105-131, (1999) · Zbl 0942.65113
[29] Gastaldi, L., A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math., 9, 123-156, (2001) · Zbl 0988.65082
[30] Hasnedlova, J.; Feistauer, M.; Horaček, J.; Kosik, A.; Kučera, V., Numerical simulation of fluid-structure interaction of compressible flow and elastic structure, Computing, 95, s343-s361, (2013)
[31] Havle, O.; Dolejši, V.; Feistauer, M., Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions, Appl. Math., Praha, 55, 353-372, (2010) · Zbl 1224.65219
[32] Houston, P.; Schwab, C.; Suli, E., Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39, 2133-2163, (2002) · Zbl 1015.65067
[33] Khadra, K.; Angot, P.; Parneix, S.; Caltagirone, J.-P., Fictiuous domain approach for numerical modelling of Navier-Stokes equations, Int. J. Numer. Methods Fluids, 34, 651-684, (2000) · Zbl 1032.76041
[34] Oden, J. T.; Babuška, I.; Baumann, C. E., A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146, 491-519, (1998) · Zbl 0926.65109
[35] D. Schotzau: hp-DGFEM for Parabolic Evolution Problems. Applications to Diffusion and Viscous Incompressible Fluid Flow. PhD Thesis, ETH No. 13041, Zürich, 1999. · Zbl 1312.65157
[36] Schotzau, D.; Schwab, C., An hp a priori error analysis of the DG time-stepping method for initial value problems, Calcolo, 37, 207-232, (2000) · Zbl 1012.65084
[37] V. Thomee: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics 25, Springer, Berlin, 2006. · Zbl 1105.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.