×

zbMATH — the first resource for mathematics

Robust neural network control of robotic manipulators via switching strategy. (English) Zbl 1340.93135
Summary: In this paper, a robust neural network control scheme for the switching dynamical model of the robotic manipulators has been addressed. Radial basis function (RBF) neural networks are employed to approximate unknown functions of robotic manipulators and a compensation controller is designed to enhance system robustness. The weight update law of the robotic manipulator is based on switched multiple Lyapunov function method and the periodically switching law which is suitable for practical implementation is constructed. The proposed control scheme can guarantee that the resulting closed-loop switched system is asymptotically Lyapunov stable and the tracking error performance of the control system is well reached. Finally, a simulation example of two-link robotic manipulators is shown to illustrate the effectiveness of the proposed control method.
MSC:
93C85 Automated systems (robots, etc.) in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barambones, O., Etxebarria, V.: Robust neural control for robotic manipulators. Automatica38 (2002), 235-242. · Zbl 0991.93080 · doi:10.1016/S0005-1098(01)00191-1
[2] Bascetta, L., Rocco, P.: Revising the robust-control design for rigid robot manipulators. IEEE Trans. Robotics 26 (2010), 180-187. · doi:10.1109/tro.2009.2033957
[3] Du, H. B., He, Y. G., Cheng, Y. Y.: Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems. Kybernetika 49 (2013), 507-523. · Zbl 1274.93008 · dml.cz
[4] Ge, S. S., Lee, T. H., Harris, C. J.: Adaptive Neural Network Control of Robotic Manipulators. World Scientific, London 1998. · doi:10.1142/3774
[5] Han, T. T., S., Ge, S., Lee, T. T.: Adaptive neural control for a class of switched nonlinear systems. Systems Control Lett. 58 (2009), 109-118. · Zbl 1155.93414 · doi:10.1016/j.sysconle.2008.09.002
[6] Imura, J., Sugie, T., Yoshikawa, T.: Adaptive robust control of robot manipulators-theory and experiment. IEEE Trans. Robot. Automatic 10 (1994), 705-710. · doi:10.1109/70.326574
[7] Krstic, M., Kanellakopoulos, I., V.Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York 1995.
[8] Lan, J. L., Sun, W. J., Peng, Y. J.: Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction. Kybernetika 50 (2014), 450-469. · Zbl 1298.93347 · doi:10.14736/kyb-2014-3-0450 · www.kybernetika.cz
[9] Lewis, F. L., Abdallah, C. T., Dawson, D. M.: Control of Robot Manipulators. MacMillan, New York 1993.
[10] Liberzon, D.: Switching in Systems and Control. Birkhauser, Boston 2003. · Zbl 1036.93001 · doi:10.1007/978-1-4612-0017-8
[11] Long, F., Fei, S.: Neural networks stabilization and disturbance attenuation for nonlinear switched impulsive systems. Neurocomputing 71 (2008), 1741-1747. · Zbl 05718604 · doi:10.1016/j.neucom.2007.11.015
[12] Salas, O., Castaneda, H., Leon-Morales, J. De: Attitude observer-based robust control for a twin rotor system. Kybernetika 49 (2013), 809-828. · Zbl 1278.93283 · dml.cz
[13] Slotine, J. J., Li, W. P.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, New Jersey 1991. · Zbl 0753.93036
[14] Sun, Z. D., Ge, S. S.: Analysis and synthesis of switched linear control systems. Automatica 41 (2005), 181-195. · Zbl 1074.93025 · doi:10.1016/j.automatica.2004.09.015
[15] Tomei, P.: Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Automat. Control 45 (2000), 2164-2169. · Zbl 0989.93061 · doi:10.1109/9.887661
[16] Wang, X. H., Ji, H. B., Wang, C. R.: Distributed output regulation for linear multi-agent systems with unknown leaders. Kybernetika 49 (2013), 524-538. · Zbl 1274.93011 · dml.cz
[17] Wang, L., Chai, T.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Industr. Electronics 56 (2009), 3296-3304. · doi:10.1109/tie.2008.2011350
[18] Wang, L., Chai, T., Yang, C.: Neural-network-based contouring control for robotic manipulators in operational space. IEEE Transactions on Control Systems Technology 20 (2012),1073-1080. · doi:10.1109/tie.2008.2011350
[19] Xie, G. M., Wang, L.: Periodic stabilizability of switched linear control systems. Automatica 45 (2009), 2141-2148. · Zbl 1175.93192 · doi:10.1016/j.automatica.2009.05.016
[20] Yu, L., Fei, S. M., Sun, L. N., Huang, J., Yang, G.: Design of robust adaptive neural switching controller for robotic manipulators with uncertainty and disturbances. J. Intell. Robot. Systems 77 (2015), 571-581. · doi:10.1007/s10846-013-0008-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.