×

The period-index problem for fields of transcendence degree 2. (English) Zbl 1337.14020

The author proves a result on the Brauer group for functions fields \(K=k(X)\) of algebraic surfaces \(X\) over finite fields \(k\). Namely for each Brauer class \(\alpha\in\mathrm{Br}(K)\), the index divides the square of the period, that is \(\mathrm{ind}(\alpha)|\mathrm{per}(\alpha)^2\). The result actually holds if \(K\) is an extension of transcendence degree two over a perfect field \(k\) for which the maximal prime-to-\(l\) extensions are pseudo-algebraically closed fields, with Galois group the \(l\)-adic integers, for all primes \(l\). In general, it is conjectured that \(\mathrm{ind}(\alpha)|\mathrm{per}(\alpha)^{d-1}\) holds for \(C_d\) fields \(K\). Thus Lieblich’s result supports this conjecture, by treating a whole class of \(C_3\) fields of geometric origin.
The proof reduces the assertion to the existence of coherent sheaves of certain ranks on certain stacks, which is then established by geometric methods. The problem is easily reduced to the case that the Brauer class \(\alpha\) has prime period \(l\), and that the ground field \(k\) is pseudo-algebraically closed, which means that every geometrically integral quasiprojective scheme contains a rational point. Lieblich’s approach is to extend the cohomology class \(\alpha\) from the function field \(K=k(X)\) of the algebraic surface to a certain smooth 2-dimensional Deligne–Mumford stack \(\mathcal{X}\rightarrow X\), obtained as the \(l\)th root stack with respect to the ramification divisor \(D\subset X\) of the Brauer class \(\alpha\). There the class is represented by a suitable \(\mu_l\)-gerbe \(\mathcal{X}\rightarrow\mathcal{X}\). The main step is to show that there is an invertible sheaf \(\mathcal{N}\) on \(\mathcal{X}\) and a geometrically integral, in particular nonempty, open substack \(\mathcal{S}\) of the Artin stack of coherent \(\mathcal{X}\)-twisted sheaves on \(\mathcal{X}\), of rank \(l^2\) and determinant \(\mathcal{N}\). For this stack, there is a chart \(S\rightarrow\mathcal{S}\) with \(S\) a geometrically integral quasiprojective scheme. The assumptions on the ground field \(k\) then ensure that \(S\) has a \(k\)-rational point.
The bulk of the paper is a careful construction of the stack \(\mathcal{S}\), starting with sheaves on the preimage \(\mathcal{D}\subset \mathcal{X}\) of the ramification divisor \(D\subset X\), and extending them \(\mathcal{X}\), by using elementary transformations, deformation theory and ideas from [M. Lieblich, Duke Math. J. 138, No. 1, 23–118 (2007; Zbl 1122.14012); K. G. O’Grady, Invent. Math. 123, No. 1, 141–207 (1996; Zbl 0869.14005); D. J. Saltman, J. Algebra 314, No. 2, 817–843 (2007; Zbl 1129.16014); A. J. de Jong et al., Publ. Math., Inst. Hautes Étud. Sci. 114, 1–85 (2011; Zbl 1285.14053)].

MSC:

14F22 Brauer groups of schemes
12G05 Galois cohomology
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14D20 Algebraic moduli problems, moduli of vector bundles

References:

[1] Théorie des Intersections et Théorème de Riemann-Roch, Berthelot, P., Grothendieck, A., and Illusie, L., Eds., New York: Springer-Verlag, 1971, vol. 225. · Zbl 0218.14001 · doi:10.1007/BFb0066283
[2] H. Xuhua, A. J. de Jong, and J. M. Starr, ”Families of rationally simply connected varieties over surfaces and torsors for semisimple groups,” Publ. Math. Inst. Hautes Études Sci., vol. 114, pp. 1-85, 2011. · Zbl 1285.14053 · doi:10.1007/s10240-011-0035-1
[3] M. Artin, ”Algebraization of formal moduli. I,” in Global Analysis (Papers in Honor of K. Kodaira), Tokyo: Univ. Tokyo Press, 1969, pp. 21-71. · Zbl 0205.50402
[4] M. Artin, ”Local structure of maximal orders on surfaces,” in Brauer Groups in Ring Theory and Algebraic Geometry, New York: Springer-Verlag, 1982, vol. 917, pp. 146-181. · Zbl 0508.14027
[5] M. Artin and A. J. de Jong, Stable orders over surfaces, 2003.
[6] M. Artin and D. Mumford, ”Some elementary examples of unirational varieties which are not rational,” Proc. London Math. Soc., vol. 25, pp. 75-95, 1972. · Zbl 0244.14017 · doi:10.1112/plms/s3-25.1.75
[7] J. Ax, ”The elementary theory of finite fields,” Ann. of Math., vol. 88, pp. 239-271, 1968. · Zbl 0195.05701 · doi:10.2307/1970573
[8] C. Cadman, ”Using stacks to impose tangency conditions on curves,” Amer. J. Math., vol. 129, iss. 2, pp. 405-427, 2007. · Zbl 1127.14002 · doi:10.1353/ajm.2007.0007
[9] J. Colliot-Thélène, Die Brauersche Gruppe; ihre Verallgemeinerungen und Anwendungen in der Arithmetischen Geometrie (Vortragsnotizen, Brauer Tagung, Stuttgart, 22.-24. März 2001), 2001.
[10] J. Colliot-Thélène, ”Exposant et indice d’algèbres simples centrales non ramifiées,” Enseign. Math., vol. 48, iss. 1-2, pp. 127-146, 2002. · Zbl 1047.16007
[11] A. J. de Jong, A result of Gabber, 2003.
[12] A. J. de Jong, ”The period-index problem for the Brauer group of an algebraic surface,” Duke Math. J., vol. 123, iss. 1, pp. 71-94, 2004. · Zbl 1060.14025 · doi:10.1215/S0012-7094-04-12313-9
[13] J. Starr and J. de Jong, ”Almost proper GIT-stacks and discriminant avoidance,” Doc. Math., vol. 15, pp. 957-972, 2010. · Zbl 1210.14013
[14] A. Kresch, ”Cycle groups for Artin stacks,” Invent. Math., vol. 138, iss. 3, pp. 495-536, 1999. · Zbl 0938.14003 · doi:10.1007/s002220050351
[15] A. Kresch and A. Vistoli, ”On coverings of Deligne-Mumford stacks and surjectivity of the Brauer map,” Bull. London Math. Soc., vol. 36, iss. 2, pp. 188-192, 2004. · Zbl 1062.14004 · doi:10.1112/S0024609303002728
[16] M. Lieblich, ”Moduli of twisted orbifold sheaves,” Adv. Math., vol. 226, iss. 5, pp. 4145-4182, 2011. · Zbl 1211.14050 · doi:10.1016/j.aim.2010.11.011
[17] M. Lieblich, ”Period and index in the Brauer group of an arithmetic surface,” J. Reine Angew. Math., vol. 659, pp. 1-41, 2011. · Zbl 1230.14021 · doi:10.1515/CRELLE.2011.059
[18] M. Lieblich, ”Moduli of twisted sheaves,” Duke Math. J., vol. 138, iss. 1, pp. 23-118, 2007. · Zbl 1122.14012 · doi:10.1215/S0012-7094-07-13812-2
[19] M. Lieblich, ”Twisted sheaves and the period-index problem,” Compos. Math., vol. 144, iss. 1, pp. 1-31, 2008. · Zbl 1133.14018 · doi:10.1112/S0010437X07003144
[20] E. Matzri, ”Symbol length in the Brauer group of a field,” Trans. Amer. Math. Soc.. · Zbl 1339.12002 · doi:10.1090/tran/6326
[21] L. Moret-Bailly, ”Un problème de descente,” Bull. Soc. Math. France, vol. 124, iss. 4, pp. 559-585, 1996. · Zbl 0914.13002
[22] K. G. O’Grady, ”Moduli of vector bundles on projective surfaces: some basic results,” Invent. Math., vol. 123, iss. 1, pp. 141-207, 1996. · Zbl 0869.14005 · doi:10.1007/BF01232371
[23] M. C. Olsson, ”On proper coverings of Artin stacks,” Adv. Math., vol. 198, iss. 1, pp. 93-106, 2005. · Zbl 1084.14004 · doi:10.1016/j.aim.2004.08.017
[24] D. J. Saltman, ”Division algebras over \(p\)-adic curves,” J. Ramanujan Math. Soc., vol. 12, iss. 1, pp. 25-47, 1997. · Zbl 0902.16021
[25] D. J. Saltman, ”Cyclic algebras over \(p\)-adic curves,” J. Algebra, vol. 314, iss. 2, pp. 817-843, 2007. · Zbl 1129.16014 · doi:10.1016/j.jalgebra.2007.03.003
[26] . J-P. Serre, Local Fields, New York: Springer-Verlag, 1979, vol. 67. · Zbl 0423.12016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.