zbMATH — the first resource for mathematics

Continuous étale cohomology. (English) Zbl 0649.14011
The author shows how to construct a very well-behaved \(p\)-adic cohomology theory, called continuous cohomology by deriving the left exact functor \[ \{\text{inverse system }(F_n)\text{ of étale sheaves on }X\} \to \text{ abelian groups } (F_n) \mapsto \lim_{\overset \leftarrow n}H_0(X,F_n). \] The construction, when applied to locally constant sheaves, \(F_n\), gives the continuous étale cohomology theory of W. G. Dwyer and E. M. Friedlander [Trans. Am. Math. Soc. 292, 247–280 (1985; Zbl 0581.14012)]. However, the author’s construction applies to arbitrary sheaves while enjoying all the desirable properties of a cohomology theory (e.g. Hochschild-Serre spectral sequences, Chern classes, a Milnor \(\lim_{\leftarrow}^ 1\) sequence to relate it to \(\ell\)-adic cohomology). All in all, continuous cohomology looks to be one way around a number of technical difficulties in \(\ell\)-adic cohomology.
Reviewer: V.P.Snaith

14F20 Étale and other Grothendieck topologies and (co)homologies
14F30 \(p\)-adic cohomology, crystalline cohomology
18G10 Resolutions; derived functors (category-theoretic aspects)
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
Full Text: DOI EuDML
[1] Bousfield, A.K., Kan, D.M.: Homotopy limits, completions and localizations. Lecture Notes in Mathematics 304. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0259.55004
[2] Bredon, G.: Sheaf theory. New York: McGraw-Hill 1967 · Zbl 0158.20505
[3] Dwyer, W.G., Friedlander, E.M.: Algebraic and étaleK-theory. Trans. Am. Math. Soc.292, 247-280 (1985) · Zbl 0581.14012
[4] Eilenberg, S., MacLane, S.: Cohomology theory of abstract groups. I. Ann. Math.48, 51-78 (1947) · Zbl 0029.34001 · doi:10.2307/1969215
[5] Gray, B.I.: Spaces of the samen-type, for alln. Topology5, 241-243 (1966) · Zbl 0149.20102 · doi:10.1016/0040-9383(66)90008-5
[6] Grothendieck, A.: Sur quelques points d’algèbre homologique. Tôhoku Math. J.9, 119-221 (1957) · Zbl 0118.26104
[7] Grothendieck, A.: La théorie des classes de Chern: Bull Soc. Math. Fr.86, 137-154 (1958) · Zbl 0091.33201
[8] Harrison, D.K.: Infinite abelian groups and homological methods. Ann. Math.69, 366-391 (1956) · Zbl 0100.02901 · doi:10.2307/1970188
[9] Milne, J.S.: Étale cohomology, Princeton Mathematical Series 33, Princeton, 1980 · Zbl 0433.14012
[10] Roos, J.-E.: Sur les foncteurs dérivés de \(\underleftarrow {\lim }\) . Applications. C.R. Acad. Sci. Ser. I252, 3702-3704 (1961) · Zbl 0102.02501
[11] Roos, J.-E.: Sur les foncteurs dérivés des produits infinis dans les catégories de Grothendieck. Exemples et contre-exemples. C.R. Acad. Sci. Ser. I263, 895-898 (1966) · Zbl 0163.26805
[12] Serre, J.-P.: Cohomologie Galoisienne. Lecture Notes in Mathematics 5. Berlin, Göttingen, Heidelberg, New York: Springer 1964 · Zbl 0143.05901
[13] Soulé, Ch.: Operations on étaleK-theory. Applications. Lecture Notes in Mathematics 966, 271-303. Berlin, Heidelberg, New York: Springer 1982
[14] Tate, J.: Relations betweenK 2 and Galois cohomology. Invent. Math.36, 257-274 (1976) · Zbl 0359.12011 · doi:10.1007/BF01390012
[15] Tate, J.: Algebraic cycles and poles of zeta functions. Arithmetical algebraic geometry (Purdue Lafayette 1963). Schilling, O.F.G. (ed.). New York: Harper & Row 1965
[16] Grothendieck, A., et al.: Théorie des topos et cohomologie étale des schémas. Tome 3. Lecture Notes in Mathematics 305. Berlin, Heidelberg, New York: Springer 1973
[17] Deligne, P., et al.: Cohomologie étale. Lecture Notes in Mathematics 569. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0349.14008
[18] Grothendieck A., et al.: Cohomologiel-adique et fonctionsL. Lecture Notes in Mathematics 589. Berlin, Heidelberg, New York: Springer 1982
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.