Bahri, Abbas; Coron, Jean-Michel On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain. (English) Zbl 0649.35033 Commun. Pure Appl. Math. 41, No. 3, 253-294 (1988). This paper gives an existence result for the elliptic model problem with the critical Sobolev exponent: \(-\Delta u=u^{(N+2)/(N-2)}\) and \(u>0\) on \(\Omega\), \(u=0\) on \(\partial \Omega.\) The authors prove, that existence is implied by \(H_ d(\Omega,{\mathbb{Z}}_ 2)\neq 0\) for some \(d\in {\mathbb{N}}\). As a corollary a solution exists in three dimensions, if \(\Omega\) is not contractible; - this was known e.g. for \(\Omega\) an annulus (and non-existence is known for \(\Omega\) starshaped). Hence this result clarifies the influence of the topology of the domain to the existence problem. Reviewer: M.Wiegner Cited in 14 ReviewsCited in 424 Documents MSC: 35J60 Nonlinear elliptic equations 35D05 Existence of generalized solutions of PDE (MSC2000) 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs 35A30 Geometric theory, characteristics, transformations in context of PDEs Keywords:existence; critical Sobolev exponent; topology of the domain PDFBibTeX XMLCite \textit{A. Bahri} and \textit{J.-M. Coron}, Commun. Pure Appl. Math. 41, No. 3, 253--294 (1988; Zbl 0649.35033) Full Text: DOI References: [1] Pseudo orbites des formes de contact, C. R. Acad. Sc. Paris, 299, série I, 1984, pp. 757–760 and detailed paper to appear. [2] Critical points at infinity in the variational calculus, Seminaire E. D. P. Ecole Polytechnique, 1985–1986. · Zbl 0857.15020 [3] to appear. [4] and , Sur une équation elliptique non linéaire avec l’exposant critique de Sobolev, C. R. Acad. Sc. Paris, 301, série I, 1985, pp. 345–348. [5] Introduction to Compact Transformation Groups, Academic Press, New York, 1972. · Zbl 0246.57017 [6] Brezis, Archive Rat. Mech. Anal. 89 pp 21– (1985) [7] Brezis, Comm. Pure Appl. Math. 36 pp 437– (1983) [8] Topologie et cas limite des injections de Sobolev, C. R. Acad. Sc. Paris, 299, série I, 1984, pp. 209–212. [9] Kazdan, Comm. Pure Appl. Math. 38 pp 557– (1975) [10] Donaldson, J. Diff. Geometry 18 pp 279– (1983) [11] Lions, Rev. Mat. Iberoamericana 1 pp 145– (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6 [12] in preparation. [13] Meeks, Annals of Math. 112 pp 441– (1980) [14] Morse Theory, Annals Math. Studies, 51, Princeton Univ. Press, 1963. [15] Eigenfunctions of the equation {\(\Delta\)}u + {\(\lambda\)}f(u)= 0, Soviet Math. Doklady 6, 1965, pp. 1408–1411 (translated from Russian Dokl. Akad. Nauk SSSR 165, 1965, pp. 33–36). [16] Sacks, Annals of Math. 113 pp 1– (1981) [17] Schoen, J. Diff. Geometry 20 pp 479– (1984) [18] Sedlacek, Comm. Math. Phys. 86 pp 515– (1982) [19] Siu, Inv. Mathematicae 59 pp 189– (1980) [20] Struwe, Math. Z. 187 pp 511– (1984) [21] Taubes, J. Diff. Geometry 19 pp 337– (1984) [22] Taubes, Comm. Math. Phys. 97 pp 473– (1985) [23] Thom, C. R. Acad. Sc. Paris 236 pp 453– (1953) [24] Trudinger, Ann. Sc. Norm. Sup. Pisa 22 pp 265– (1968) [25] Uhlenbeck, Comm. Math. Phys. 83 pp 11– (1982) [26] Uhlenbeck, Comm. Math. Phys. 83 pp 31– (1982) [27] Wente, Arch. Rational Mech. Anal. 75 pp 59– (1980) [28] and , to appear. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.