zbMATH — the first resource for mathematics

Effet tunnel entre puits dégénérés. (Tunnel effect between degenerate wells). (French) Zbl 0649.35073
This paper is about the discrete spectrum of the Schrödinger operator \(P=-h^ 2\Delta +v\) in the semiclassical limit. We assume that the potential V admits two degenerate point-wells, and we obtain upper and lower bounds for the splitting between the first two eigenvalues of P. Part of this is generalised for higher eigenvalues, and we also get an asymptotic equivalent of the splitting in the one dimensional case.
Reviewer: A.Martinez

35P15 Estimates of eigenvalues in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI
[1] DOI: 10.1002/cpa.3160270502 · Zbl 0294.35020
[2] Bouted de Monvel L, Astérisque pp 93– (1976)
[3] Candelpherger B, J. Math. Pures et App 60 pp 323– (1981)
[4] DOI: 10.1007/BF01213596 · Zbl 0464.35085
[5] DOI: 10.1016/0022-1236(83)90085-X · Zbl 0562.47002
[6] DOI: 10.1007/BF01210848 · Zbl 0579.47050
[7] ecalle, J. 1984. ”Cinq applications des fonctions résurgents”. Orsay: prépub. Univ.
[8] C.Gérard-A. Grigis precise estimates of tunneling and eigenvalues near a potential barrier, à paraître au J. of Diff. Eq
[9] DOI: 10.1007/BF01212711 · Zbl 0445.35036
[10] Helffer B, Astérisque 112 (1984)
[11] DOI: 10.1080/03605308408820335 · Zbl 0546.35053
[12] Helffer B, Ann. I.H.P 42 pp 127– (1985)
[13] DOI: 10.1002/mana.19851240117 · Zbl 0597.35023
[14] DOI: 10.1007/BF02399203 · Zbl 0611.58045
[15] Martinez A, J. Math. Putes et App 66 pp 195– (1987)
[16] A. Martinez Estimations de l’effet tunnel pour le double puits II - Etats hautements excuités, à paraître au Bull. de la S.M.F.
[17] Reed, M and Simon, B. 1978. ”Methods of modern mathematical physics”. Vol. 4, New York: Academic Press. · Zbl 0401.47001
[18] Sibuya Y, Math. Studies (1975)
[19] Simon B, Ann. de l’I.H.P. 38 pp 295– (1983)
[20] DOI: 10.2307/2007072 · Zbl 0626.35070
[21] Voros A, Ann. de l’I.H.P 29 pp 211– (1983)
[22] Waston, g. 1966. ”A Treatise on the theory of Bassel functions”. N.Y: Cambridge University press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.