Bismut, Jean-Michel Demailly’s asymptotic Morse inequalities: a heat equation proof. (English) Zbl 0649.58030 J. Funct. Anal. 72, 263-278 (1987). From the introduction: “J. P. Demailly [C. R. Acad. Sci., Paris, Ser. I 301, 119-122 (1985; Zbl 0595.58014); Ann. Inst. Fourier 35, 189- 229 (1985; Zbl 0575.58013)] proved remarkable asymptotic Morse inequalities for the \({\bar \partial}\) complex constructed over the line bundle \(E^{\otimes k}\) as \(k\uparrow \uparrow +\infty\), where E is a holomorphic hermitian line bundle. The inequalities of Demailly give asymptotic bounds on the Morse sums of the Betti numbers of \({\bar \partial}\) on \(E^{\otimes k}\) in terms of certain integrals of the curvature of E. The analysis of Demailly is based on the beautiful remark that in the formula for (\({\bar \partial}+{\bar \partial}^*)^ 2\) on \(E^{\otimes k}\), the metric of E plays formally the role of the Morse function. In this paper, we give a heat equation proof of Demailly’s inequalities.” Reviewer: G.Warnecke Cited in 1 ReviewCited in 31 Documents MSC: 58J10 Differential complexes 58J35 Heat and other parabolic equation methods for PDEs on manifolds 57R70 Critical points and critical submanifolds in differential topology Keywords:heat equation; elliptic complexes; asymptotic Morse inequalities Citations:Zbl 0595.58014; Zbl 0575.58013 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Atiyah, M. F.; Bott, R.; Patodi, V. K., On the heat equation and the Index Theorem, Invent. Math., 19, 279-330 (1973) · Zbl 0257.58008 [2] Atiyah, M. F.; Bott, R.; Shapiro, A., Clifford modules, Topology, 3, Supp 1, 3-38 (1964) · Zbl 0146.19001 [3] Bismut, J. M., The Atiyah-Singer theorems: A probabilistic approach. II. The Lefschetz fixed point formulas, J. Funct. Anal., 57, 329-348 (1984) · Zbl 0556.58027 [4] Bismut, J. M., The infinitesimal Lefschetz formulas: a heat equation proof, J. Funct. Anal., 62, 435-457 (1985) · Zbl 0572.58021 [5] Bismut, J. M., The Witten complex and the degenerate Morse inequalities, J. Differential Geom., 23, 207-240 (1986) · Zbl 0608.58038 [6] Bismut, J. M., Inégalités de Morse dégénérées et complexes de Witten, C. R. Acad. Sci. Sér. I, 301, 23-25 (1985) · Zbl 0608.57023 [7] Bismut, J. M., Large deviations and the Malliavin calculus, (“Progress in Math.” No. 45 (1984), Birkhaüser: Birkhaüser Boston) · Zbl 0537.35003 [8] Demailly, J. P., Champs magnétiques et inégalités de Morse pour la \(d\)″ cohomologie, C. R. Acad. Sci. Sér. I, 301, 119-122 (1985) · Zbl 0595.58014 [9] Demailly, J. P., Champs magnétiques et inégalités de Morse pour la \(d\)″ cohomologie, Ann. Inst. Fourier, 35, 4, 189-229 (1985) · Zbl 0565.58017 [10] Grauert, H.; Riemenschneider, O., Werschwindungsätze für analytische Kohomologiegruppen auf Komplexen Raüme, Invent. Math., 11, 263-292 (1970) · Zbl 0202.07602 [11] Lichnerowicz, A., Spineurs harmoniques, C. R. Acad. Sci. Sér. A, 257, 7-9 (1963) · Zbl 0136.18401 [12] Siu, Y. T., A vanishing Theorem for semipositive line bundles over non Kähler manifolds, J. Differential Geom., 19, 431-452 (1984) · Zbl 0577.32031 [13] Siu, Y. T., Some recent results in complex manifold theory related to vanishing theorems for the semi-positive case, (Proceedings of the Bonn Arbeitstagung. Proceedings of the Bonn Arbeitstagung, 1984. Proceedings of the Bonn Arbeitstagung. Proceedings of the Bonn Arbeitstagung, 1984, Lecture Notes in Math No. 1111 (1985), Springer), 169-192 · Zbl 0577.32032 [14] Witten, E., Supersymmetry and Morse theory, J. Differential Geom., 17, 661-692 (1982) · Zbl 0499.53056 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.