×

zbMATH — the first resource for mathematics

Reactive transport codes for subsurface environmental simulation. (English) Zbl 1323.86002
Summary: A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of the codes, along with a selective list of applications that highlight their capabilities and historical development.

MSC:
86-08 Computational methods for problems pertaining to geophysics
76S05 Flows in porous media; filtration; seepage
76V05 Reaction effects in flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Li, L; Steefel, CI; Yang, L, Scale dependence of mineral dissolution rates within single pores and fractures, Geochim. Cosmochim. Acta., 72, 360-377, (2008)
[2] Molins, S; Trebotich, D; Steefel, CI; Shen, C, An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation, Water Resour. Res., 48, w03527, (2012)
[3] Steefel, CI; Molins, S; Trebotich, D, Pore scale processes associated with subsurface CO2 injection and sequestration, Rev. Mineral. Geochem., 77, 259-303, (2013)
[4] Oostrom, M., Mehmani, Y., Romero-Gomez, P., Tang, Y., Liu, H., Yoon, H., Zhang, C.: Pore-scale and continuum simulations of solute transport micromodel benchmark experiments. Comput. Geosci., 1-23 (2014)
[5] Aris, R, Prolegomena to the rational analysis of systems of chemical reactions, Arch. Ration. Mech. Anal., 19, 81-99, (1965)
[6] Bowen, RM, On the stoichiometry of chemically reacting materials, Arch. Ration. Mech. Anal., 29, 114-124, (1968)
[7] Hooyman, GJ, On thermodynamic coupling of chemical reactions, Proc. Natl. Acad. Sci., 47, 1169-1173, (1961)
[8] Kirkner, DJ; Reeves, H, Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: effect of chemistry on the choice of numerical algorithm I. theory, Water Resour. Res., 24, 1719-1729, (1988)
[9] Lichtner, PC, Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochim. Cosmochim. Acta, 49, 779-800, (1985)
[10] Reed, MH, Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase, Geochim. Cosmochim. Acta, 46, 513-528, (1982)
[11] Van Zeggeren, F., Storey, S.H.: The computation of chemical equilibria, p. 176. Cambridge University Press, Cambridge (1970)
[12] Steefel, CI; Lasaga, AC, A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems, Am. J. Sci., 294, 529-592, (1994)
[13] Davis, JA; Meece, DE; Kohler, M; Curtis, GP, Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments, Geochim. Cosmochim. Acta, 68, 3621-3641, (2004)
[14] Kulik, DA, Thermodynamic concepts in modeling sorption at the mineral-water interface, Rev. Mineral. Geochem., 70, 125-180, (2009)
[15] Dzombak, D.A., Morel, F.M.M.: Surface complexation modeling: hydrous ferric oxide, p. 393. Wiley, New York (1990)
[16] Wang, Z; Giammar, DE, Mass action expressions for bidentate adsorption in surface complexation modeling: theory and practice, Environ. Sci. Technol., 47, 3982-3996, (2013)
[17] Davis, JA; Coston, JA; Kent, DB; Fuller, CC, Application of the surface complexation concept to complex mineral assemblages, Environ. Sci. Technol., 32, 2820-2828, (1998)
[18] Liu, C; Zachara, JM; Qafoku, NP; Wang, Z, Scale-dependent desorption of uranium from contaminated subsurface sediments, Water Resour. Res., 8, 44, (2008)
[19] Vanselow, AP, Equilibria of the base-exchange reactions of bentonites, permutites, soil colloids, and zeolites, Soil Sci., 33, 95-114, (1932)
[20] Sposito, G.: The thermodynamics of soil solutions, p. 223. Oxford University Press, Oxford (1981)
[21] Appelo, C.A.J., Postma, D.: Geochemistry, groundwater, and pollution. A.A. Balkema, Rotterdam, p. 649 (1993)
[22] Steefel, CI; Carroll, S; Zhao, P; Roberts, S, Cesium migration in hanford sediment: A multi-site cation exchange model based on laboratory transport experiments, J. Contam. Hydrol., 67, 219-246, (2003)
[23] Aagaard, P; Helgeson, HC, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, theoretical considerations, Am. J. Sci., 282, 237-285, (1982)
[24] Lasaga, AC, Chemical kinetics of water-rock interactions, J. Geophys. Res. Solid Earth (1978-2012), 89, 4009-4025, (1984)
[25] Rittmann, B.E., McCarty, P.L.: Environmental biotechnology. McGraw Hill, New York (2001)
[26] Jin, Q; Bethke, CM, Predicting the rate of microbial respiration in geochemical environments, Geochim. Cosmochim. Acta, 69, 1133-1143, (2005)
[27] Bear, J.: Dynamics of fluids in porous media, p. 764. Dover Publications (1972) · Zbl 1191.76001
[28] Steefel, CI; Maher, K, Fluid-rock interaction: A reactive transport approach, Rev. Mineral. Geochem., 70, 485-532, (2009)
[29] Neuman, SP, Saturated-unsaturated seepage by finite elements, J. Hydrol. Div. Am. Soc. Civ. Eng., 99, 2233-2250, (1973)
[30] Panday, S; Huyakorn, PS; Therrien, R; Nichols, RL, Improved three-dimensional finite-element techniques for field simulation of variably-saturated flow and transport, J. Contam. Hydrol., 12, 3-33, (1993)
[31] Van Genuchten, MT, A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898, (1980)
[32] Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Colorado State Univ., Hydrology Paper No. 3, p. 27 (1964)
[33] Luckner, L; Van Genuchten, MT; Nielsen, DR, A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface, Water Resour. Res., 25, 2187-2193, (1989)
[34] Millington, RJ, Gas diffusion in porous media, Science, 130, 100-102, (1959)
[35] Mayer, KU; Blowes, DW; Frind, EO, Reactive transport modeling for the treatment of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater, Water Resour. Res., 37, 3091-3103, (2001)
[36] Molins, S; Mayer, KU, Coupling between geochemical reactions and multicomponent gas diffusion and advection - a reactive transport modeling study, Water Resour. Res., 43, w05435, (2007)
[37] Cheadle, MJ; Elliott, MT; McKenzie, D, Percolation threshold and permeability of crystallizing igneous rocks: the importance of textural equilibrium, Geology, 32, 757-760, (2004)
[38] Verma, A; Pruess, K, Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations, J. Geophys. Res. Solid Earth, 93, 1159-1173, (1988)
[39] Vaughan, P.J.: Analysis of permeability reduction during flow of heated aqueous fluid through Westerly Granite. In: Tsang, C.-F. (ed.) Coupled processes associated with nuclear waste repositories. Academic Press, New York (1989)
[40] Slider, H.C.: Practical petroleum reservoir engineering methods, An Energy Conservation Science. Petroleum Publishing Company, Tulsa (1976)
[41] Wu, Y.S.: On the effective continuum method for modeling multiphase flow, multicomponent transport, and heat transfer in fractured rock. In: Faybishenk, B., Witherspoon, P.A., Benson, S.M. (eds.) Dynamics of Fluids Fractured Rock, pp. 299-312 (2000)
[42] Barenblatt, GI; Zheltov, IP; Kochina, IN, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., 24, 1286-1303, (1960) · Zbl 0104.21702
[43] Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. SPE J. 3, 245-255 (1963)
[44] Pruess, K; Narasimhan, TN, A practical method for modeling fluid and heat flow in fractured porous media, Soc. Pet. Eng. J., 25, 14-26, (1985)
[45] Snow, D.T.: A parallel plate model of fractured permeable media, Ph.D. dissertation, p. 331. University of California, Berkeley (1965)
[46] Arora, B., Mohanty, B.P., McGuire, J.T.: Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities. Water Resour. Res. 47, 1-17 (2011)
[47] Wu, YS; Di, Y; Kang, Z; Fakcharoenphol, P, A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs, J. Pet. Sci. Eng., 78, 13-22, (2011)
[48] Aradóttir, ESP; Sigfússon, B; Sonnenthal, EL; Björnsson, G; Jónsson, H, Dynamics of basaltic Glass dissolution-capturing microscopic effects in continuum scale models, Geochim. Cosmochim. Acta, 121, 311-327, (2013)
[49] Lichtner, P.C.: Critique of dual continuum formulations of multicomponent reactive transport in fractured porous media. In: Faybishenk, B., Witherspoon, P.A., Benson, S.M. (eds.) Dynamics of Fluids Fractured Rock, pp. 281-298 (2000) · Zbl 1356.86022
[50] Berkowitz, B, Characterizing flow and transport in fractured geological media: A review, Adv. Water Resour., 25, 861-884, (2002)
[51] Šimu̇nek, J; Jarvis, NJ; Van Genuchten, MT; Gärdenäs, A, Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone, J. Hydrol., 272, 14-35, (2003)
[52] MacQuarrie, KT; Mayer, KU, Reactive transport modeling in fractured rock: A state-of-the-science review, Earth Sci. Rev., 72, 189-227, (2005)
[53] Somerton, W.H., El-Shaarani, A.H., Mobarak, S.M.: High temperature behavior of rocks associated with geothermal type reservoirs. In: SPE California Regional Meeting. Society of Petroleum Engineers (1974)
[54] Steefel, C.I., MacQuarrie, K.T.B.: Approaches to modeling reactive transport in porous media. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) Reactive Transport in Porous Media, vol. 34, pp. 83-125. Reviews in Mineralogy (1996)
[55] Kulik, DA; Wagner, T; Dmytrieva, SV; Kosakowski, G; Hingerl, FF; Chudnenko, KV; Berner, UR, GEM-selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes, Comput. Geosci., 17, 1-24, (2013) · Zbl 1356.86022
[56] Leal, AMM; Blunt, MJ; LaForce, TC, Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling, Geochim. Cosmochim., 131, 301-322, (2014)
[57] Saaltink, MW; Carrera, J; Ayora, C, On the behavior of approaches to simulate reactive transport, J. Contam. Hydrol., 48, 213-235, (2001)
[58] Calderhead, A., Mayer, K.U.: Comparison of the suitability of the global implicit method and the sequential non-iterative approach for multicomponent reactive transport modelling. In: Proceedings of 5th Joint IAH-CNC/CGS Conference, Québec City, Québec, Canada, pp. 24-28 (2004)
[59] Lichtner, PC, Time-space continuum description of fluid/rock interaction in permeable media, Water Resour. Res., 28, 3135-3155, (1992)
[60] Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQ C (Version 2) - a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations, Water-Resources Investigations, Report 99-4259, Denver, Co, USA, p. 312 (1999)
[61] Parkhurst, D.L., Appelo, C.A.J.: Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06/a43 (2013)
[62] Appelo, CAJ; Parkhurst, DL; Post, VEA, Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures, Geochim. Cosmochim. Acta, 125, 49-67, (2014)
[63] Thorstenson, DC; Parkhurst, DL, Calculation of individual isotope equilibrium constants for geochemical reactions, Geochim. Cosmochim. Acta, 11, 2449-2465, (2004)
[64] Charlton, SR; Parkhurst, DL, Phast4windows: A 3D graphical user interface for the reactive-transport simulator PHAST, Groundwater, 4, 623-628, (2013)
[65] Šimu̇nek, J., Jacques, D., Šejna, M., van Genuchten, M.T.: The HP2 Program for HYDRUS (2D/3D): A coupled code for simulating two-dimensional variably-saturated water flow, heat transport, and biogeochemistry in porous media, Version 1.0, PC Progress, Prague, Czech Republic, p. 76 (2012)
[66] Šimu̇nek, J., Jacques, D., Langergraber, G., Bradford, S.A., Šejna, M., van Genuchten, M.T.: Numerical modeling of contaminant transport using HYDRUS and its specialized modules, Vol. 93, pp 265-284 (2013). ISSN: 0970-4140 Coden-JIISAD
[67] Parkhurst, D.L., Kipp, K.L., Charlton, S.R.: PHAST Version 2—a program for simulating groundwater flow, solute transport, and multicomponent geochemical reactions: U.S. Geological Survey Techniques and Methods 6-A35, p. 235 (2010)
[68] Prommer, H., Post, V.E.A.: PHT3D, A Reactive Multicomponent Transport Model for Saturated Porous Media. User’s Manual v2.10 (2010). http://www.pht3d.org
[69] Šiu̇nek, J; van Genuchten, MT, Modeling non-equilibrium flow and transport processes using HYDRUS, Vadose Zone J., 7, 782-797, (2008)
[70] Jacques, D., Šimu̇nek, J.: User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1, Description, Verification and Examples, Version 1.0, SCK⋅CEN-BLG-998, Waste and Disposal, SCK⋅CEN, Mol, Belgium, p. 79 (2005)
[71] Jacques, D; Šimu̇nek, J; Mallants, D; van Genuchten, MT, Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles, J. Contam. Hydrol., 88, 197-218, (2006)
[72] Šimu̇nek, J; Hopmans, JW, Modeling compensated root water and nutrient uptake, Ecological Modeling, 220, 505-521, (2009)
[73] Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.T., Yu, L.: A coupled reactive transport model for contaminant leaching from cementitious waste matrices accounting for solid phase alterations. In: Proceedings Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium (2011)
[74] Celia, MA; Bououtas, ET; Zarba, RL, A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 1483-1496, (1990)
[75] Jacques, D; Šimu̇nek, J; Mallants, D; van Genuchten, MT, Modelling coupled water flow, solute transport and geochemical reactions affection heavy metal migration in a podzol soil, Geoderma, 145, 449-461, (2008)
[76] Jacques, D; Šimu̇nek, J; Mallants, D; van Genuchten, MT, Modeling coupled hydrogeologic and chemical processes: long-term uranium transport following phosphorus fertilization, Vadose Zone J., 7, 698-711, (2008)
[77] Jacques, D; Smith, C; Šimu̇nek, J; Smiles, D, Inverse optimization of hydraulic, solute transport, and cation exchange parameters using HP1 and UCODE to simulate cation exchange, J. Contam. Hydrol., 142-143, 109-125, (2012)
[78] Bessinger, B.A., Marks, C.D.: Treatment of mercury-contaminated soils with activated carbon: A laboratory, field, and modeling study. Remediation (The journal of Environmental Cleanup Costs, Technologies, & Techniques), 21(1), 115-135 (2010). doi:10.1002/rem.20275
[79] Leterme, B., Jacques, D.: Modelling of mercury fate and transport in soil systems. In: Proceedings of the 12th International UFZ-Deltares Conference on Groundwater-Soil-Systems and Water Resource Management - AQUACONSOIL 2013 (2013). www.aquaconsoil.org/AquaConSoil2013/Proceedings.html
[80] Leterme, B., Blanc, P., Jacques, D.: A reactive transport model for mercury fate in soil - application to different anthropogenic pollution sources. Environmental Science and Pollution Research, (under review) (2014)
[81] Jacques, D., Maes, N., Perko, J., Seetharam, S.C. , Phung, Q.T., Patel, R., Soto, A., Liu, S., Wang, L., De Schutter, G., Ye, G., van Breugel, K.: Concrete in engineered barriers for radioactive waste disposal facilities - phenomenological study and assessment of long term performance. In: Proceedings of the ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM2013-96282 (2013)
[82] Thaysen, EM; Jacques, D; Jessen, S; Andersen, CE; Laloy, E; Ambus, P; Postma, D; Jakobsen, I, Controls on carbon dioxide fluxes across the unsaturated zone of cropped and unplanted soil mesocosms, Biogeosciences, 11, 4251-4299, (2014)
[83] Zheng, C, Wang, P.P.: MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems: documentation and user’s guide. Contract Report SERDP-99-1, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi (available at http://hydro.geo.ua.edu/mt3d) (1999)
[84] Prommer, H., Post, V.E.A.: PHT3D, A Reactive multicomponent transport model for saturated porous media. User’s Manual v2.10 (2010). http://www.pht3d.org
[85] Prommer, H; Barry, DA; Zheng, C, MODFLOW/MT3DMS-based reactive multicomponent transport modeling, Ground Water, 41, 247-257, (2003)
[86] Appelo, CAJ; Rolle, M, PHT3D: A reactive multicomponent transport model for saturated porous media, Ground Water, 5, 627-632, (2010)
[87] Zuurbier, KG; Hartog, N; Valstar, J; Post, VEA; van Breukelen, BM, The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation, J. Contam. Hydrol., 147, 1-13, (2013)
[88] Wallis, I; Prommer, H; Post, VEA; Vandenbohede, A; Simmons, CT, Simulating MODFLOW-based reactive transport under radially symmetric flow conditions, Groundwater, 51, 398-413, (2013)
[89] Wu, MZ; Reynolds, DA; Prommer, H; Fourie, A; Thomas, DG, Numerical evaluation of voltage gradient constraints on electrokinetic injection of amendments, Adv. Water Resour., 38, 60-69, (2012)
[90] Chiang, W.H., 2nd ed.: 3D Groundwater modeling with PMWIN, p. 397. Springer-Verlag, The Netherlands (2005)
[91] Nagel, T; Shao, H; Singh, AK; Watanabe, N; Roßkopf, C; Linder, M; Wörner, A; Kolditz, O, Non-equilibrium thermochemical heat storage in porous media: part 1 - conceptual model, Energy, 60, 254-270, (2013)
[92] Kolditz, O; Bauer, S; Bilke, L; Böttcher, N; Delfs, JO; Fischer, T; Görke, UJ; Kalbacher, T; Kosakowski, G; McDermott, CI; Park, CH; Radu, F; Rink, K; Shao, H; Shao, HB; Sun, F; Sun, YY; Singh, AK; Taron, J; Walther, M; Wang, W; Watanabe, N; Wu, N; Xie, M; Xu, W; Zehner, B, Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media, Environ. Earth Sci., 67, 589-599, (2012)
[93] Rutqvist, J; Barr, D; Birkholzer, JT; Chijimatsu, M; Kolditz, O; Liu, Q; Oda, Y; Wang, W; Zhang, C, Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories, J. Nucl. Technol., 163, 101-109, (2008)
[94] Kolditz, O; Bauer, S; Beyer, C; Böttcher, N; Dietrich, P; Görke, U-J; Kalbacher, T; Park, C-H; Sauer, U; Schütze, C; Shao, HB; Singh, AK; Taron, J; Wang, W; Watanabe, N, A systematic benchmarking approach for geologic CO2 injection and storage, Environ. Earth Sci., 67, 613-632, (2012)
[95] Mukhopadhyay, S; Birkholzer, JT; Nicot, JP; Hosseini, SA, A single site multi-model comparative study for CO2 injection field test: an introduction to sim-SEQ, Environ. Earth Sci., 67, 601-611, (2012)
[96] Kolditz, O., Shao, H., Görke, U-J., Wang, W. (eds.): Thermo-hydro-mechanical-chemical processes in fractured porous media. Lecture Notes in Computational Science and Engineering, Vol. 86. Springer, Heidelberg (2012)
[97] Park, C-H; Beyer, C; Bauer, S; Kolditz, O, A study of preferential flow in heterogeneous media using random walk particle tracking, Geosci. J., 12, 285-297, (2008)
[98] Gräbe, A; Rink, K; Fischer, T; Sun, F; Wang, W; Rödiger, T; Siebert, C; Kolditz, O, Numerical analysis of the groundwater regime in the western dead sea escarpment, Environ. Earth Sci., 69, 571-586, (2013)
[99] Singh, AK; Baumann, G; Henninges, J; Görke, U-J; Kolditz, O, Numerical analysis of thermal effects during carbon dioxide injection with enhanced gas recovery: A theoretical case study for the altmark gas field, Environ. Earth Sci., 67, 497-509, (2012)
[100] Wang, W; Rutqvist, J; Gorke, U-J; Birkholzer, JT; Kolditz, O, Non-isothermal flow in low permeable porous media: A comparison of unsaturated and two-phase flow approaches, Environ. Earth Sci., 62, 1197-1207, (2011)
[101] Kolditz, O; de Jonge, J, Non-isothermal two-phase flow in porous media, Comput. Mech., 33, 345-364, (2004) · Zbl 1145.76442
[102] Park, C-H; Boettcher, N; Wang, W; Kolditz, O, Are upwind techniques in multi-phase flow models necessary, J Comp. Phys., 230, 8304-8312, (2011) · Zbl 1408.76370
[103] Delfs, J-O; Park, C-H; Kolditz, O, A sensitivity analysis of Hortonian flow, Adv. Water Resour., 32, 1386-1395, (2009) · Zbl 1180.93036
[104] Böttcher, N; Kolditz, O; Liedl, R, Evaluation of equations of state for CO2 in numerical simulations, Environ. Earth Sci., 67, 481-495, (2012)
[105] Watanabe, N; McDermott, C; Wang, W; Taniguchi, T; Kolditz, O, Uncertainty analysis of thermo-hydro-mechanical processes in heterogeneous porous media, Comput. Mech., 45, 263-280, (2010) · Zbl 1362.74024
[106] Kalbacher, T; Delfs, JO; Shao, H; Wang, W; Walther, M; Samaniego, L; Schneider, C; Musolff, A; Centler, F; Sun, F; Hildebrandt, A; Liedl, R; Borchardt, D; Krebs, P; Kolditz, O, The IWAS-toolbox: software coupling for an integrated water resources management, Environ. Earth Sci., 65, 1367-1380, (2012)
[107] Xie, M; Bauer, S; Kolditz, O; Nowak, T; Shao, H, Numerical simulation of reactive processes in an experiment with partially saturated bentonite, J Contam. Hydrol., 83, 122-147, (2006)
[108] Shao, H; Kolditz, O; Kulik, DA; Pfingsten, W; Kosakowski, G, Reactive transport of multiple non-ideal solid solutions, Appl. Geochem., 24, 1287-1300, (2009)
[109] Beyer, C; Bauer, S; Kolditz, O, Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers, J. Contam. Hydrol., 87, 73-95, (2006)
[110] Centler, F; Shao, H; Park, C-H; de Biase, C; Kolditz, O; Thullner, M, Geosysbrns - a flexible multi-dimensional reactive transport model for simulating biogeochemical subsurface processes, Comput. Geosci., 36, 397-405, (2010)
[111] Rink, K; Kalbacher, T; Kolditz, O, Visual data management for hydrological analysis, Environ. Earth Sci., 65, 1395-1403, (2012)
[112] van der Lee, J; De Windt, L; Lagneau, V; Goblet, P, Module-oriented modeling of reactive transport with HYTEC, Comput. Geosci., 29, 265-275, (2003)
[113] Wolery, T.: EQ3/6. A software package for geochemical modelling of aqueous systems: Package overview and installation guide (version 7.0). Technical Report UCRL-MA-110662 PT I ed. Lawrence Livermore National Laboratory, USA (1992)
[114] van der Lee, J., Lagneau, V.: Rigorous methods for reactive transport in unsaturated porous medium coupled with chemistry and variable porosity. In: Miller, C.T., Farthing, M.W., Gray, W.G., Pinder, G.F. (eds.) Computational Methods in Water Resources (CMWR XV), vol. 48, pp 861-868. Elsevier (2004)
[115] Lagneau, V; van der Lee, J, Operator-splitting-based reactive transport models in strong feedback of porosity change: the contribution of analytical solutions for accuracy validation and estimator improvement, J. Contam. Hydrol., 112, 118-129, (2010)
[116] Debure, M; De Windt, L; Frugier, P; Gin, S, HLW Glass dissolution in the presence of magnesium carbonate: diffusion cell experiment and coupled modeling of diffusion and geochemical interactions, J. Nucl. Mater., 443, 507-521, (2013)
[117] De Windt, L; Marsal, F; Corvisier, J; Pellegrini, D, Modeling of oxygen gas diffusion and consumption during the oxic transient in a disposal cell of radioactive waste, Appl. Geochem., 41, 115-127, (2014)
[118] Lagneau, V; Pipart, A; Catalette, H, Reactive transport modelling and long term behaviour of CO2 sequestration in saline aquifers, Oil Gas Sci. Technol., 60, 231-247, (2005)
[119] Jacquemet, N; Pironon, J; Lagneau, V; Saint-Marc, J, Armouring of well cement in H2S-CO2 saturated brine by calcite coating - experiments and numerical modeling, Appl. Geochem., 27, 782-795, (2012)
[120] De Windt, L; Devillers, P, Modeling the degradation of Portland cement pastes by biogenic organic acids, Cem. Concr. Res., 40, 1165-1174, (2010)
[121] De Windt, L; Deneele, D; Maubec, N, Kinetics of lime/bentonite pozzolanic reactions at 20 and 50 °C: batch tests and modeling, Cem. Concr. Res., 59, 34-42, (2014)
[122] Dabo, D; Badreddine, R; De Windt, L; Drouadaine, I, Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site, J. Hazard. Mater., 172, 904-913, (2007)
[123] De Windt, L; Badreddine, R; Lagneau, V, Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios, J. Hazard. Mater., 139, 529-536, (2007)
[124] De Windt, L; Badreddine, R, Modelling of long-term dynamic leaching tests applied to solidified/stabilised waste, Waste Manag., 27, 1638-1647, (2007)
[125] Corvisier, J., Bonvalot, A.F., Lagneau, V., Chiquet, P., Renard, S., Sterpenich, J., Pironon, J.: Impact of co-injected gases on CO2 storage sites: Geochemical modeling of experimental results. Proceedings of the International Conference on Greenhouse Gas Technology 11, vol. 37, pp. 3699-3710. Energy Procedia, Kyoto (2013)
[126] Meeussen, JC, ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models, Environ. Sci. Technol., 37, 1175-1182, (2003)
[127] Farmer, JG; Graham, MC; Thomas, RP; Licona-Manzur, C; Paterson, E; Campbell, CD; Geelhoed, JS; Lumsdon, DG; Meeussen, JCL; Roe, MJ; Conner, A; Fallick, AE; Bewley, RJF, Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land, Environ. Geochem. Health, 21, 331-33, (1999)
[128] Geelhoed, JS; Meeussen, JCL; Hillier, S; Lumsdon, DG; Thomas, RP; Farmer, JG; Paterson, E, Identification and geochemical modeling of processes controlling leaching of CR(VI) and other major elements from chromite ore processing residue, Geochim. Cosmochim. Acta, 66, 3927-3942, (2002)
[129] Filius, JD; Lumsdon, DG; Meeussen, JCL; Hiemstra, T; Van Riemsdijk, WH, Adsorption of fulvic acid on goethite, Geochim. Cosmochim. Acta, 64, 51-60, (2000)
[130] Weng, L; Hiemstra, T; Meeussen, JCL; Koopal, L; Van Riemsdijk, WH, Interactions of calcium and fulvic acid at the goethite-water interface, Geochim. Cosmochim. Acta, 69, 325-339, (2005)
[131] Van Riemsdijk, WH; Koopal, LK; Kinniburgh, DG; Benedetti, MF; Weng, L, Modeling the interactions between humics, ions, and mineral surfaces, Environ. Sci. Technol., 40, 7473-7480, (2006)
[132] Vink, JPM; Meeussen, JCL, BIOCHEM-ORCHESTRA: A tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems, Environ. Pollut., 148, 833-841, (2007)
[133] Nowack, B; Mayer, KU; Oswald, SE; Van Beinum, W; Appelo, CAJ; Jacques, D; Seuntjens, P, Verification and intercomparison of reactive transport codes to describe root-uptake, Plant Soil, 285, 305-321, (2006)
[134] Van der Sloot, HA; van Zomeren, A, Characterisation leaching tests and associated geochemical speciation modelling to assess long term release behaviour from extractive wastes, Mine Water Environ., 31, 92-103, (2012)
[135] Brown, K.G., Arnold, J., Sarkar, S., Flach, G., van der Sloot, H., Meeussen, J.C.L., Kosson, D.S.: Modeling carbonation of high-level waste tank integrity and closure. In EPJ Web of Conferences 56, 05003, EDP Sciences (2013)
[136] Sarkar, S; Kosson, DS; Mahadevan, S; Meeussen, JCL; van der Sloot, H; Arnold, JR; Brown, KG, Bayesian calibration of thermodynamic parameters for geochemical speciation modeling of cementitious materials, Cem. Concr. Res., 42, 889-902, (2012)
[137] Xu, T; Pruess, K, Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1, methodology, Am. J. Sci., 301, 16-33, (2001)
[138] Xu, T; Sonnenthal, E; Spycher, N; Pruess, K, TOUGHREACT - a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications for geothermal injectivity and CO2 geologic sequestration, Comput. Geosci., 32, 145-165, (2006)
[139] Xu, T; Spycher, N; Sonnenthal, E; Zhang, G; Zheng, L; Pruess, K, TOUGHREACT version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Comput. Geosci., 37, 763-774, (2011)
[140] Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 user’s guide, version 2.0. Lawrence Berkeley Laboratory Report LBL-43134, Berkeley, CA, p. 192 (1999)
[141] Finsterle, S; Sonnenthal, EL; Spycher, N, Advances in subsurface modeling: the TOUGH suite of simulators, Comput. Geosci., 65, 2-12, (2014)
[142] Pruess, K; Narasimhan, TN, On fluid reserves and the production of superheated steam from fractured, vapor-dominated geothermal reservoirs, J. Geophys. Res., 87, 9329-9339, (1982)
[143] Dobson, PF; Salah, S; Spycher, N; Sonnenthal, EL, Simulations of water rock interactions in the yellowstone geothermal system using TOUGHREACT, Geothermics, 33, 493-502, (2004)
[144] Xu, T; Ontoy, Y; Molling, P; Spycher, N; Parini, M; Pruess, K, Reactive transport modeling of injection well scaling and acidizing at the tiwi field, philippines, Geothermics, 33, 477-491, (2004)
[145] Wanner, C; Peiffer, L; Sonnenthal, EL; Spycher, N; Iovenitti, J; Kennedy, BM, Reactive transport modeling of the dixie valley geothermal area: insights on flow and geothermometry, Geothermics, 51, 130-141, (2014)
[146] Spycher, N; Sonnenthal, EL; Apps, J, Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at yucca mountain, nevada, J. Contam. Hydrol., 62-63, 653-674, (2003)
[147] Sonnenthal, EL; Ito, A; Spycher, N; Yui, M; Apps, J; Sugita, Y; Conrad, M; Kawakami, S, Approaches to modeling coupled thermal, hydrological, and chemical processes in the drift scale heater test at yucca mountain, Int. J. Rock. Mech. Min. Sci., 42, 698-719, (2005)
[148] Xu, T; Senger, R; Finsterle, S, Corrosion-induced gas generation in a nuclear waste repository: reactive geochemistry and multiphase flow effects, Appl. Geochem., 23, 3423-3433, (2008)
[149] Marty, NCM; Tournassat, C; Burnol, A; Giffaut, E; Gaucher, EC, Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/Clay interactions, J. Hydrol., 364, 58-72, (2009)
[150] Xu, T; Apps, JA; Pruess, K, Mineral sequestration of carbon dioxide in a sandstone-shale system, Chem. Geol., 217, 295-318, (2005)
[151] Audigane, P; Gaus, I; Czernichowki-Lauriol, I; Pruess, K; Xu, T, Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the sleipner site, Am. J. Sci., 307, 974-1008, (2007)
[152] Aradóttir, ESP; Sonnenthal, EL; Björnsson, G; Jónsson, H, Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the hellisheidi geothermal field, Iceland, Int. J. Greenh. Gas. Con., 9, 24-40, (2012)
[153] Zheng, L; Spycher, N; Birkholzer, J; Xu, T; Apps, J; Kharaka, Y, On modeling the potential impacts of CO2 sequestration on shallow groundwater: transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers, Int. J. Greenh. Gas. Con., 14, 113-127, (2013)
[154] Dalkhaa, C; Shevalier, M; Nightingale, M, Mayer, B.: 2-D reactive transport modeling of the fate of CO2 injected into a saline aquifer in the wabamun lake area, Alberta, Canada, Appl. Geochem., 38, 10-23, (2013)
[155] Wu, Y., Ajo-Franklin, J.B., Spycher, N., Hubbard, S.S., Zhang, G., Williams, K.H., Taylor, J., Fujita, Y., Smith, R.: Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation. Geochem. Trans. 12 (2011)
[156] Meima, JA; Graupner, T; Rammlmair, D, Modeling the effect of stratification on cemented layer formation in sulfide-bearing mine tailings, Appl. Geochem., 27, 124-137, (2012)
[157] Bea, SA; Wainwright, H; Spycher, N; Faybishenko, B; Hubbard, SS; Denham, ME, Identifying key controls on the behavior of an acidic-U (VI) plume in the savannah river site using reactive transport modeling, J. Contam. Hydrol., 151, 34-54, (2013)
[158] Kim, J., Sonnenthal, E., Rutqvist, J.A.: A sequential implicit algorithm of chemo-thermo-poro-mechanics for fractured geothermal reservoirs. Computers and Geosciences (2014)
[159] White, M.D., Oostrom, M.: STOMP subsurface transport over multiple phases version 4.0 user’s guide. Pacific Northwest National Laboratory, Washington (2006)
[160] White, M.D., McGrail, B.P.: STOMP subsurface transport over multiple phases version 1.0, Addendum: ECKEChem equilibrium-conservation-kinetic equation chemistry and reactive transport. PNNL-15482. Pacific Northwest National Laboratory, Washington (2005)
[161] Fang, YL; Yabusaki, SB; Yeh, GT, A general simulator for reaction-based biogeochemical processes, Comput. Geosci., 32, 64-72, (2006)
[162] Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc Users Manual, ANL-95/11 - revision 3.4. Argonne National Laboratory (2013)
[163] Nieplocha, J; Palmer, B; Tipparaju, V; Krishnan, M; Trease, H; Apra, E, Advances, applications and performance of the global arrays shared memory programming toolkit, Int. J. High Perform. Comput. Appl., 20, 203-231, (2006)
[164] Yeh, G.T., Tripathi, V.S.: HYDROGEOCHEM: A coupled model of HYDROlogical transport and GEOCHEMical equilibrium of multi component systems, ORNL 6371, Oak Ridge National Laboratory, p. 37831. Oak Ridge National Laboratory, Oak Ridge (1990)
[165] Yeh, GT; Siegel, MD; Li, MH, Numerical modeling of coupled fluid fflows and reactive transport including fast and slow chemical reactions, J. Contam. Hydrol., 379-390, 47, (2001)
[166] Yeh, G.T., Li, Y., Jardine, P.M., Burgos, W.D., Fang, Y.L., Li, M.H., Siegel, M.D.: HYDROGEOCHEM 4.0: A coupled model of fluid flow, thermal transport, and HYDROGEOCHEMical transport through saturated unsaturated media Version 4.0. ORNL/TM-2004/103, p. 37831. Oak Ridge National Laboratory, Oak Ridge (2004)
[167] Yeh, G.T., Sun, J.T., Jardine, P.M., Burgos, W.D., Fang, Y.L., Li, M.H., Siegel, M.D.: HYDROGEOCHEM 5.0: A three dimensional model of coupled fluid flow, thermal transport, and HYDROGEOCHEMical transport through variably saturated conditions version 5.0. ORNL/TM-2004/107, p. 37831. Oak Ridge National Laboratory, Oak Ridge (2004)
[168] Yeh, G.T., Tsai, C.H.: HYDROGEOCHEM 6.0: A two-dimensional model of coupled fluid flow, thermal transport, geomechanics, and HYDROGEOCHEMical transport through multiple phase systems version 6.0 (FACTM2D: A Model for multi-phase flow analysis and reactive chemical transport, thermal transport, and mechanics simulation, 2-dimensional version) - theoretical basis and numerical approximation. Graduate Institute of Applied Geology, National Central University, Jhongli (2013)
[169] Yeh, G.T., Tsai, C.H., Ni, C.F.: HYDROGEOCHEM 6.0: A model to couple thermal-hydrology-mechanics-chemical (THMC) processes user guide. Graduate Institute of Applied Geology, National Central University, Jhongli (2013)
[170] Yeh, GT; Fang, YL; Zhang, F; Sun, JT; Li, Y; Li, MH; Siegel, MD, Numerical modeling of coupled fluid flow and thermal and reactive biogeochemical transport in porous and fractured media, Comput. Geosci., 14, 149-170, (2010) · Zbl 1398.76174
[171] Yeh, G.T., Tripathi, V.J., Gwo, J.P., Cheng, H.P., Cheng, R.J., Salvage, K.M., Li, M.H., Fang, Y.L., Li, Y., Sun, J.T., Zhang, F., Siegel, M.D.: Chapter 1: HYDROGEOCGEM: A coupled model of variably saturated flow, thermal transport, and reactive biogeochemical transport. Groundwater reactive transport models. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Bentham e-Books. Bentham Science Publishers (2012). http://www.bentham.org
[172] Smith, J.M.: Chemical engineering kinetics, p. 676. R. R. Donnelley & Sons Company (1981)
[173] Chilakapati, A; Ginn, T; Szecsody, J, An analysis of complex reaction networks in groundwater modeling, Water Resour. Res., 34, 1767-1780, (1998)
[174] Fang, Y; Yeh, GT; Burgos, WD, A new paradigm to model reaction-based biogeochemical processes, Water Resour. Res., 39, 1083-1108, (2003)
[175] Kräutle, S; Knabner, P, A reduction scheme for coupled multicomponent transport-reaction problems in porous media: generalization to problems with heterogeneous equilibrium reactions, Water Resour. Res., 43, w03429, (2007)
[176] Yeh, G.T., Tsai, C.H., Fang, Y., Yabusaki, S., Li, M.H.: BIOGEOCHEM 1.5: A numerical model to simulate BIOGEOCHEMical reactions under multiple phase system. Graduate Institute of Applied Geology, National Central University, Jhongli (2014)
[177] Yeh, G.T., Tsai, C.H.: User’s manual for BIOGEOCHEM 1.5. Graduate Institute of Applied Geology, National Central University, Jhongli (2014)
[178] Yeh, GT; Tripathi, VS, A critical evaluation of recent developments of hydrogeochemical transport models of reactive multi-chemical components, Water Resour. Res., 25, 93-108, (1989)
[179] Liu, I-S; Cipolatti, RA; Rincon, MA, Successive linear approximation for finite elasticity, Comput. Appl. Math., 29, 465-478, (2010) · Zbl 1410.74091
[180] Yeh, GT; Tripathi, VS, A model for simulating transport of reactive multispecies components: model development and demonstration, Water Resour. Res., 27, 3075-3094, (1991)
[181] Gwo, JP; D’Azevedo, EF; Frenzel, H; Mayes, M; Yeh, GT; Jardine, PM; Salvage, KM; Hoffman, FM, HBGC123D: A high performance computer model of coupled hydrogeological and bigeochemical processes, Comput. Geosci., 27, 1231-1242, (2001)
[182] Yeh, GT; Gwo, JP; Siegel, MD; Li, MH; Fang, YL; Zhang, F; Luo, WS; Yabusaki, SB, Innovative mathematical modeling in environmental remediation, J. Environ. Radioact., (2011)
[183] Kent, DB; Davis, JA; Anderson, LCD; Rea, BA; Waite, TD, Transport of chromium and selenium in the suboxic zone of a shallow aquifer: influence of redox and adsorption reactions, Water Resour. Res., 30, 1099-1114, (1994)
[184] Abrams, R.H.: A compartmentalized approach to simulating redox zones in contaminated aquifers. PhD Dissertation, Department of Geological and Environmental Sciences, Stanford University, Palo Alto, California (1999)
[185] Bahr, J.M.: Keating, E.H.:. Redox geochemistry of shallow groundwater discharging to Allequash Creek in northern Wisconsin. WRC GRR 95-08. Water Resources Center, University of Wisconsin-Madison, p. 41 (1995)
[186] Tournassat, C; Appelo, CAJ, Modelling approaches for anion-exclusion in compacted na-bentonite, Geochim. Cosmochim. Acta, 75, 3698-3710, (2011)
[187] Steefel, CI; Van Cappellen, P, A new kinetic approach to modeling water-rock interaction: the role of nucleation, precursors, and ostwald ripening, Geochim. Cosmochim. Acta, 54, 2657-2677, (1990)
[188] Steefel, CI; Lasaga, AC, A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems, Am. J. Sci., 294, 529-592, (1994)
[189] Steefel, CI; Lichtner, PC, Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture, Geochim. Cosmochim. Acta, 58, 3592-3612, (1994)
[190] Steefel, CI; Lichtner, PC, Multicomponent reactive transport in discrete fractures: I. controls on reaction front geometry, J. Hydrol., 209, 186-199, (1998)
[191] Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures: II. Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. J. Hydrol. 209, 200-224 (1998)
[192] Giambalvo, ER; Steefel, CI; Fisher, AT; Rosenberg, ND; Wheat, CG, Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the juan de fuca ridge, Geochim. Cosmochim. Acta, 66, 1739-1757, (2002)
[193] Maher, K; Steefel, CI; DePaolo, D; Viani, B, The mineral dissolution rate conundrum: insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments, Geochim. Cosmochim. Acta, 70, 337-363, (2006)
[194] Maher, K; Steefel, CI; White, AF; Stonestrom, DA, The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the santa cruz soil chronosequence, California, Geochim. Cosmochim. Acta, 73, 2804-2831, (2009)
[195] Navarre-Sitchler, A; Steefel, CI; Sak, PB; Brantley, SL, A reactive transport model for weathering rind formation on basalt, Geochim. Cosmochim. Acta, 75, 7644-7667, (2011)
[196] Navarre-Sitchler, A., Steefel, C.I., Yang, L., Tomutsa, L., Brantley, S.L.: Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast. J. Geophys. Res., 114 (2009). doi:10.1029/2008JF001060
[197] Li, L; Gawande, N; Kowalsky, MB; Steefel, CI; Hubbard, SS, Physicochemical heterogeneity controls on uranium bioreduction rates at the field scale, Environ. Sci. Technol., 45, 9959-9966, (2011)
[198] Li, L; Steefel, CI; Kowalsky, MB; Englert, A; Hubbard, SS, Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during uranium bioremediation at rifle, colorado, J. Contam. Hydrol., 11, 45-63, (2010)
[199] Li, L; Steefel, CI; Williams, KH; Wilkins, MJ; Hubbard, SS, Mineral transformation and biomass accumulation during uranium bioremediation, rifle, colorado, Environ. Sci. Technol., 43, 5429-5435, (2009)
[200] Druhan, JL; Steefel, CI; Molins, S; Williams, KH; Conrad, ME; DePaolo, DJ, Timing the onset of sulfate reduction over multiple subsurface acetate amendments by measurement and modeling of sulfur isotope fraction, Environ. Sci. Technol., 46, 8895-8902, (2012)
[201] Druhan, JL; Steefel, CI; Conrad, ME; DePaolo, DJ, A large column analog experiment of stable isotope variations during reactive transport: I. A comprehensive model of sulfur cycling and δ 34S fractionation, Geochim. Cosmochim. Acta, 124, 366-393, (2014)
[202] Mayer, KU; Frind, EO; Blowes, DW, Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions, Water Resour. Res., 38, 1174, (2002)
[203] Cheng, L.: Dual porosity reactive transport modeling, PhD thesis. University of Sheffield, UK (2006)
[204] Cheng, L., Lerner, D., Thornton, S., Mayer, K.U.: Managing MTBE attenuation in a dual porosity chalk aquifer - field observations and modelling results. Proceedings of ModelCARE 2009 Groundwater and the Environment, p. 341. IAHS Publishing, Wuhan (2009)
[205] Amos, RT; Mayer, KU, Investigating the role of gas bubble formation and entrapment in contaminated aquifers: reactive transport modeling, J. Contam. Hydrol., 87, 123-154, (2006)
[206] Amos, RT; Mayer, KU, Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modelling, environ, Sci. Technol., 40, 5361-5367, (2006)
[207] Molins, S; Mayer, KU; Scheutz, C; Kjeldsen, P, Role of transport mechanisms in the attenuation of landfill gas in cover soils: A multicomponent modelling study, J. Environ. Qual., 37, 459-468, (2008)
[208] Molins, S; Mayer, KU; Amos, RT; Bekins, BA, Vadose zone attenuation of organic compounds at a crude oil spill site - interactions between biogeochemical reactions and multicomponent gas transport, J. Contam. Hydrol., 112, 15-29, (2010)
[209] Henderson, T; Mayer, KU; Parker, B; Al, T, Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate, J. Contam. Hydrol., 106, 195-211, (2009)
[210] Bea, S.A., Mayer, K.U., MacQuarrie, K.T.B.: Modelling reactive transport in sedimentary rock environments - Phase II MIN3P-THCm code enhancements and illustrative simulations for a glaciation scenario. Technical report: NWMO TR-2011-13 (2011)
[211] Harvie, CE; Moller, N; Weare, JH, The prediction of mineral solubilities in natural waters: the na-K-mg-ca-H-cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 oc, Geochim. Cosmochim. Acta, 48, 723-751, (1984)
[212] Pitzer, KS, Thermodynamics of electrolytes. I. theoretical basis and general equations, J. Phys. Chem., 77, 268-277, (1973)
[213] Monnin, C, Density calculation and concentration scale conversions for natural waters, Comput. Geosci., 20, 1435-1445, (1994)
[214] Neuzil, C, Hydromechanical coupling in geologic processes, Hydrogeol. J., 11, 41-83, (2003)
[215] Bea, S; Wilson, S; Mayer, KU; Dipple, G; Power, I; Gamazo, P, Reactive transport modeling of natural carbon sequestration in ultramafic mine tailings, Vadose Zone J., 11, 1-17, (2012)
[216] Sihota, N.J., Mayer, K.U.: Characterizing vadose zone hydrocarbon biodegradation using CO _{2}-effluxes, isotopes, and reactive transport modeling. Vadose Zone J., 11 (2012). doi:10.2136/vzj2011.0204
[217] Miller, GR; Rubin, Y; Mayer, KU; Benito, PH, Modeling vadose zone processes during land application of food-processing waste water in california’s central valley, J. Environ. Qual., 37, 43-57, (2008)
[218] Gérard, F; Tinsley, M; Mayer, KU, Preferential flow revealed by hydrologic modeling based on predicted hydraulic properties and intensive water content monitoring, Soil Sci. Soc. Am. J., 68, 1526-1538, (2004)
[219] Lichtner, P.C., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R.T., Kumar, J.: PFLOTRAN User manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes (2013)
[220] Goode, DJ, Direct simulation of groundwater age, Water Resour. Res., 32, 289-296, (1996)
[221] Hammond, GE; Lichtner, PC, Field-scale model for the natural attenuation of uranium at the hanford 300 area using high performance computing, Wat. Res. Res, 46, 1-31, (2010)
[222] Lichtner, P.C., Karra, S.: Modeling multiscale-multiphase-multicomponent reactive flows in porous media: Application to CO2 sequestration and enhanced geothermal energy using PFLOTRAN. In: Al-Khoury, R., Bundschuh, J. (eds.) Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage, pp 81-136. CRC Press (2014)
[223] Karra, S., Painter, S.L., Lichtner, P.C.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions. Cryosphere Discuss. 8, 149-185 (2014)
[224] de Vries, LM; Molinero, J; Ebrahimi, H; Svensson, U; Lichtner, P, High performance reactive transport simulation of hyperalkaline plume migration in fractured rocks, Mineral. Mag., 77, 982, (2013)
[225] Navarre-Sitchler, AK; Maxwell, RM; Siirila, ER; Hammond, GE; Lichtner, PC, Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: implications for monitoring of CO2 sequestration, Adv. Water Resour., 53, 45-55, (2013)
[226] Steefel, CI; DePaolo, D; Lichtner, PC, Reactive transport modeling: an essential tool and a new research approach for the Earth sciences, Earth Planet. Sci. Lett., 240, 539-558, (2005)
[227] Gibson, BD; Amos, RT; Blowes, DW, S-34/S-32 fractionation during sulfate reduction in groundwater treatment systems: reactive transport modeling, Env. Sci. Technol., 45, 2863-2870, (2011)
[228] Greskowiak, J., Prommer, J.H., Liu, C., Post, V.E.A., Ma, R., Zheng, C., Zheng, C., Zachara, J.M.: Comparison of parameter sensitivities between a laboratory and field-scale model of uranium transport in a dual domain, distributed rate reactive system. Water Resour. Res. 46, 9: W09509 (2010)
[229] Doherty, J.: PEST: A unique computer program for model-independent parameter optimisation. Water Down Under 94: Groundwater/Surface Hydrology Common Interest Papers; Preprints of Papers, p. 551 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.