×

Palindromic width of finitely generated solvable groups. (English) Zbl 1344.20044

The authors investigate the palindromic width of finitely generated solvable groups. They show the finiteness of the palindromic width for finitely generated abelian-by-nilpotent-by-nilpotent groups (see Theorem 1.2). For arbitrary solvable groups, they prove the finiteness of the palindromic width, when the group \(G\) is solvable, finitely generated and possesses an abelian subgroup \(A\) such that quotient \(G/A\) satisfies the maximal condition on normal subgroups (see Theorem 1.1). In particular, finitely generated solvable groups of derived length \(\leq 3\) have finite palindromic width (see Corollary 1.3).

MSC:

20F16 Solvable groups, supersolvable groups
20F05 Generators, relations, and presentations of groups
20F19 Generalizations of solvable and nilpotent groups
20E22 Extensions, wreath products, and other compositions of groups

References:

[1] Akhavan-Malayeri M., Bull. Korean Math. Soc. 43 (4) pp 805– (2006) · Zbl 1129.20023 · doi:10.4134/BKMS.2006.43.4.805
[2] Akhavan-Malayeri M., Glasg. Math. J. 40 (1) pp 117– (1998) · Zbl 0911.20028 · doi:10.1017/S0017089500032407
[3] Allambergenov Kh. S., Dokl. Akad. Nauk UzSSR 4 pp 14– (1984)
[4] Allambergenov , Kh. S. Roman’kov , V. A. ( 1985 ). On products of commutators in groups. (Russian)Depon. VINITI4566-85, 20 pp .
[5] Bardakov V., Algebra i Logika 39 (4) pp 395– (2000) · doi:10.1007/BF02681648
[6] Bardakov V., Algebra i Logika 36 (5) pp 494– (1997) · doi:10.1007/BF02671606
[7] Bardakov V. G., J. Algebra 402 pp 379– (2014) · Zbl 1308.20034 · doi:10.1016/j.jalgebra.2013.12.002
[8] Bardakov V. G., Int. J. Algebra. Comput. 24 (5) pp 553– (2014) · Zbl 1354.20021 · doi:10.1142/S0218196714500246
[9] Bardakov V., J. Algebra 285 pp 574– (2005) · Zbl 1085.20011 · doi:10.1016/j.jalgebra.2004.11.003
[10] Bardakov V., J. Aust. Math. Soc. 81 (2) pp 199– (2006) · Zbl 1114.20012 · doi:10.1017/S1446788700015822
[11] Collins D., Combinatorial and Geometric Group Theory pp 63– (1995)
[12] Deloup F., J. Knot Theory Ramifications 19 (2) pp 145– (2010) · Zbl 1193.20044 · doi:10.1142/S0218216510007802
[13] Deloup F., Asian J. Math. 12 (1) pp 65– (2008) · Zbl 1154.20035 · doi:10.4310/AJM.2008.v12.n1.a5
[14] Gilman J., J. Algebra 332 pp 1– (2011) · Zbl 1237.20023 · doi:10.1016/j.jalgebra.2011.02.010
[15] Gilman J., Conform. Geom. Dyn. 13 pp 76– (2009) · Zbl 1193.30055 · doi:10.1090/S1088-4173-09-00191-X
[16] Gilman J., Geometry of Riemann surfaces. Proceedings of the Anogia conference to celebrate the 65th birthday of William J. Harvey, Anogia, Crete, Greece, June–July 2007 pp 194– (2010)
[17] Glover H., Comment. Math. Helv. 75 pp 644– (2000) · Zbl 0972.20021 · doi:10.1007/s000140050143
[18] Helling H., J. Algebra 223 pp 610– (2000) · Zbl 0951.20025 · doi:10.1006/jabr.1999.8117
[19] Kassel C., Theor. Comput. Sci. 409 (3) pp 461– (2008) · Zbl 1155.68066 · doi:10.1016/j.tcs.2008.09.011
[20] Magnus W., Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations (1996)
[21] Piggott A., J. Algebra 304 pp 359– (2006) · Zbl 1111.20028 · doi:10.1016/j.jalgebra.2005.12.005
[22] Rhemtulla A. H., Math. Proc. Cambridge Philos. Soc. 64 pp 573– (1969) · doi:10.1017/S0305004100043231
[23] Rhemtulla A. H., Can. J. Math. 21 pp 1160– (1969) · Zbl 0186.03903 · doi:10.4153/CJM-1969-126-4
[24] Riley T. R., Groups Complexity Cryptology 6 (2) pp 121– (2014) · Zbl 1312.20034 · doi:10.1515/gcc-2014-0009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.