×

zbMATH — the first resource for mathematics

Functional additive regression. (English) Zbl 1327.62252
Summary: We suggest a new method, called Functional Additive Regression, or FAR, for efficiently performing high-dimensional functional regression. FAR extends the usual linear regression model involving a functional predictor, \(X(t)\), and a scalar response, \(Y\), in two key respects. First, FAR uses a penalized least squares optimization approach to efficiently deal with high-dimensional problems involving a large number of functional predictors. Second, FAR extends beyond the standard linear regression setting to fit general nonlinear additive models. We demonstrate that FAR can be implemented with a wide range of penalty functions using a highly efficient coordinate descent algorithm. Theoretical results are developed which provide motivation for the FAR optimization criterion. Finally, we show through simulations and two real data sets that FAR can significantly outperform competing methods.

MSC:
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
Software:
fda (R); hgam
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Ait-Saïdi, A., Ferraty, F., Kassa, R. and Vieu, P. (2008). Cross-validated estimations in the single-functional index model. Statistics 42 475-494. · Zbl 1274.62519 · doi:10.1080/02331880801980377
[2] Alter, O., Brown, P. O. and Botstein, D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97 10101-10106.
[3] Amato, U., Antoniadis, A. and De Feis, I. (2006). Dimension reduction in functional regression with applications. Comput. Statist. Data Anal. 50 2422-2446. · Zbl 1445.62078
[4] Bongiorno, E., Goia, A. and Salinelli, E. (2014). Contributions in infinite-dimensional statistics and related topics. Societa Editrice Esculapio. · Zbl 1377.62023
[5] Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data. Methods , Theory and Applications . Springer, Heidelberg. · Zbl 1273.62015 · doi:10.1007/978-3-642-20192-9
[6] Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model. Statist. Sinica 13 571-591. · Zbl 1050.62041
[7] Chen, D., Hall, P. and Müller, H.-G. (2011). Single and multiple index functional regression models with nonparametric link. Ann. Statist. 39 1720-1747. · Zbl 1220.62040 · doi:10.1214/11-AOS882 · arxiv:1211.5018
[8] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. · Zbl 1073.62547 · doi:10.1198/016214501753382273
[9] Fan, J. and Lv, J. (2011). Nonconcave penalized likelihood with NP-dimensionality. IEEE Trans. Inform. Theory 57 5467-5484. · Zbl 1365.62277 · doi:10.1109/TIT.2011.2158486
[10] Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928-961. · Zbl 1092.62031 · doi:10.1214/009053604000000256 · arxiv:math/0406466
[11] Fan, Y., Foutz, N., James, G. M. and Jank, W. (2014). Functional response additive model estimation with online virtual stock markets. Ann. Appl. Stat. 8 2435-2460. · Zbl 06408785 · doi:10.1214/14-AOAS781
[12] Fan, Y., James, G. M. and Radchenko, P. (2015). Supplement to “Functional additive regression.” . · Zbl 1327.62252 · doi:10.1214/15-AOS1346 · euclid:aos/1442364153
[13] Febrero-Bande, M. and González-Manteiga, W. (2013). Generalized additive models for functional data. TEST 22 278-292. · Zbl 1367.62116 · doi:10.1007/s11749-012-0308-0
[14] Ferraty, F., Goia, A., Salinelli, E. and Vieu, P. (2013). Functional projection pursuit regression. TEST 22 293-320. · Zbl 1367.62117 · doi:10.1007/s11749-012-0306-2
[15] Ferraty, F. and Vieu, P. (2003). Curves discrimination: A nonparametric functional approach. Comput. Statist. Data Anal. 44 161-173. · Zbl 1429.62241
[16] Ferraty, F. and Vieu, P. (2009). Additive prediction and boosting for functional data. Comput. Statist. Data Anal. 53 1400-1413. · Zbl 05687855
[17] Goia, A. (2012). A functional linear model for time series prediction with exogenous variables. Statist. Probab. Lett. 82 1005-1011. · Zbl 1241.62124 · doi:10.1016/j.spl.2012.02.009
[18] Hall, P., Poskitt, D. S. and Presnell, B. (2001). A functional data-analytic approach to signal discrimination. Technometrics 43 1-9. · Zbl 1072.62686 · doi:10.1198/00401700152404273
[19] Hall, P., Reimann, J. and Rice, J. (2000). Nonparametric estimation of a periodic function. Biometrika 87 545-557. · Zbl 0956.62031 · doi:10.1093/biomet/87.3.527
[20] Hastie, T. and Mallows, C. (1993). Comment on “A statistical view of some chemometrics regression tools.” Technometrics 35 140-143.
[21] Huang, J., Horowitz, J. L. and Wei, F. (2010). Variable selection in nonparametric additive models. Ann. Statist. 38 2282-2313. · Zbl 1202.62051 · doi:10.1214/09-AOS781 · arxiv:1010.4115
[22] James, G. M. (2002). Generalized linear models with functional predictors. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 411-432. · Zbl 1090.62070 · doi:10.1111/1467-9868.00342
[23] James, G. M. and Silverman, B. W. (2005). Functional adaptive model estimation. J. Amer. Statist. Assoc. 100 565-576. · Zbl 1117.62364 · doi:10.1198/016214504000001556 · miranda.asa.catchword.org
[24] Li, K.-C. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86 316-342. · Zbl 0742.62044 · doi:10.2307/2290563
[25] Lian, H. (2011). Functional partial linear model. J. Nonparametr. Stat. 23 115-128. · Zbl 1359.62157 · doi:10.1080/10485252.2010.500385
[26] Loh, P.-L. and Wainwright, M. J. (2015). Regularized \(M\)-estimators with nonconvexity: Statistical and algorithmic theory for local optima. J. Mach. Learn. Res. 16 559-616. · Zbl 1360.62276
[27] Lv, J. and Fan, Y. (2009). A unified approach to model selection and sparse recovery using regularized least squares. Ann. Statist. 37 3498-3528. · Zbl 1369.62156 · doi:10.1214/09-AOS683
[28] Mas, A. and Pumo, B. (2007). The ARHD model. J. Statist. Plann. Inference 137 538-553. · Zbl 1103.62088 · doi:10.1016/j.jspi.2005.12.006
[29] Meier, L., van de Geer, S. and Bühlmann, P. (2009). High-dimensional additive modeling. Ann. Statist. 37 3779-3821. · Zbl 1360.62186 · doi:10.1214/09-AOS692
[30] Müller, H.-G. and Stadtmüller, U. (2005). Generalized functional linear models. Ann. Statist. 33 774-805. · Zbl 1068.62048 · doi:10.1214/009053604000001156 · arxiv:math/0505638
[31] Müller, H.-G. and Yao, F. (2008). Functional additive models. J. Amer. Statist. Assoc. 103 1534-1544. · Zbl 1286.62040 · doi:10.1198/016214508000000751
[32] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis , 2nd ed. Springer, New York. · Zbl 1079.62006 · doi:10.1007/b98888
[33] Ravikumar, P., Lafferty, J., Liu, H. and Wasserman, L. (2009). Sparse additive models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 1009-1030. · doi:10.1111/j.1467-9868.2009.00718.x
[34] Schumaker, L. L. (2007). Spline Functions : Basic Theory , 3rd ed. Cambridge Univ. Press, Cambridge. · Zbl 1123.41008
[35] Simon, N. and Tibshirani, R. (2012). Standardization and the group Lasso penalty. Statist. Sinica 22 983-1001. · Zbl 1257.62080 · doi:10.5705/ss.2011.075
[36] Storey, J. D., Xiao, W., Leek, J. T., Tompkins, R. G. and Davis, R. W. (2005). Significance analysis of time course microarray experiments. Proc. Natl. Acad. Sci. USA 102 12837-12842.
[37] Wasserman, L. (2006). All of Nonparametric Statistics . Springer, New York. · Zbl 1099.62029 · doi:10.1007/0-387-30623-4
[38] Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index models. J. Amer. Statist. Assoc. 97 1042-1054. · Zbl 1045.62035 · doi:10.1198/016214502388618861
[39] Zhou, S., Shen, X. and Wolfe, D. A. (1998). Local asymptotics for regression splines and confidence regions. Ann. Statist. 26 1760-1782. · Zbl 0929.62052 · doi:10.1214/aos/1024691356
[40] Zhu, H., Vannucci, M. and Cox, D. D. (2010). A Bayesian hierarchical model for classification with selection of functional predictors. Biometrics 66 463-473. · Zbl 1192.62095 · doi:10.1111/j.1541-0420.2009.01283.x
[41] Zou, H., Hastie, T. and Tibshirani, R. (2007). On the “degrees of freedom” of the lasso. Ann. Statist. 35 2173-2192. · Zbl 1126.62061 · doi:10.1214/009053607000000127 · euclid:aos/1194461726 · arxiv:0712.0881
[42] Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist. 36 1509-1533. · Zbl 1142.62027 · doi:10.1214/009053607000000802 · arxiv:0808.1012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.