×

Modelling of elastoplastic behaviour of metallic materials with a homogenization approach: a self-consistent model based on dislocation densities. (English) Zbl 1329.74239

Summary: A self-consistent scheme taking into account the intragranular microstructure is applied for the micromechanical modelling of the elastoplastic material behaviour during monotonic and sequential loading paths. The intragranular description used in the model is initially based on experimental observations of the dislocations evolution in body-centred cubic polycrystals. We have extended this description to face-centred cubic materials. For each crystallite, three internal variables are introduced to describe the microstructural features allowing to determine the mechanical characteristics of the grain. Next, a meso-macro transition using an elastoplastic self-consistent model is used to deduce the polycrystal behaviour from the grain one. A correct agreement is observed between simulations and experimental results at the mesoscopic and the macroscopic levels.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

Software:

BEARTEX
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Liu, Q.; Juul Jensen, D.; Hansen, N., Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, Acta Mater., 46, 5819-5838, (1998)
[2] Ungar, T.; Mughrabi, H.; Rönnpagel, D.; Wilkens, M., X-ray line-broadening study of the dislocation cell structure in deformed [001]-orientated copper single crystals, Acta Metall., 32, 333-342, (1984)
[3] Borbely, A.; Hoffmann, G.; Aernoudt, E.; Ungar, T., Dislocation arrangement and residual long-range internal stresses in copper single crystals at large deformations, Acta Mater., 45, 89-98, (1997)
[4] Winther, G.; Jensen, D.J., Deformation induced dislocation boundaries: alignment and effect on mechanical properties, Comput. Mater. Sci., 9, 251-260, (1997)
[5] Boehler, J.-P., Khan, A.S.: Anisotropy and localization of plastic deformation. In: Proceedings of Plasticity ’91 the Third International Symposium on Plasticity and Its Current Applications. Elsevier, New York (1991)
[6] Chun, B.K.; Jinn, J.T.; Lee, J.K., Modeling the bauschinger effect for sheet metals, part I: theory, Int. J. Plast., 18, 571-595, (2002) · Zbl 1064.74033
[7] Bouvier, S., Alves, J.L., Oliveira, M.C., Menezes, L.F.: Modelling of anisotropic work-hardening behaviour of metallic materials subjected to strain-path changes. Comput. Mater. Sci. 32, 301-315 (2005)
[8] Kim, B.G.; Dong, S.L.; Park, S.D., Effects of thermal processing on thermal expansion coefficient of a 50 vol.
[9] Holden T.M., Holt R.A., Clarke A.P.: Intergranular Stresses in Incoloy-800. Atomic Energy of Canada Limited, Chalk River, Ontario (1997)
[10] Gloaguen, D.; François, M.; Guillen, R., Mesoscopic residual stresses of plastic origin in zirconium: interpretation of X-ray diffraction results, J. Appl. Crystallogr., 37, 934-940, (2004)
[11] Castelnau, O.; Francillette, H.; Bacroix, B.; Lebensohn, R.A., Texture dependent plastic behavior of zr 702 at large strain, J. Nucl. Mater., 297, 14-26, (2001)
[12] Gloaguen, D.; Francois, M.; Guillen, R.; Royer, J., Evolution of internal stresses in rolled zr702\(α\), Acta Mater., 50, 871-880, (2002)
[13] Langlois, L.; Berveiller, M., Overall softening and anisotropy related with the formation and evolution of dislocation cell structures, Int. J. Plast., 19, 599-624, (2003) · Zbl 1090.74524
[14] Muller, D.; Lemoine, X.; Berveiller, M., Nonlocal behavior of elastoplastic metals: theory and results, J. Eng. Mater. Technol., 116, 378-383, (1994)
[15] Muller, D.; Berveiller, M.; Kratochvíl, J., Non-local hardenings in metals, Mater. Sci. Forum, 123, 195-204, (1993)
[16] Mughrabi, H., The long-range internal stress field in the dislocation wall structure of persistent slip bands, Phys. Status Solidi A, 104, 107-120, (1987)
[17] Fajoui, J.; Gloaguen, D.; Courant, B.; Guillén, R., Micromechanical modelling of the elastoplastic behaviour of metallic material under strain-path changes, Comput. Mech., 44, 285-296, (2009) · Zbl 1165.74010
[18] Peeters, B.; Seefeldt, M.; Teodosiu, C.; etal., Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths: I an integrated model based on substructure and texture evolution, and its prediction of the stress-strain behaviour of an IF steel during two-stage strain paths, Acta Mater., 49, 1607-1619, (2001)
[19] Karaman, I.; Sehitoglu, H.; Beaudoin, A.J.; etal., Modeling the deformation behavior of hadfield steel single and polycrystals due to twinning and slip, Acta Mater., 48, 2031-2047, (2000)
[20] Viatkina, E.M.; Brekelmans, W.A.M.; Geers, M.G.D., Numerical analysis of strain path dependency in FCC metals, Comput. Mech., 41, 391-405, (2008) · Zbl 1162.74328
[21] Peeters, B.; Kalidindi, S.R.; Teodosiu, C.; etal., A theoretical investigation of the influence of dislocation sheets on evolution of yield surfaces in single-phase B.C.C. polycrystals, J. Mech. Phys. Solids, 50, 783-807, (2002) · Zbl 1116.74336
[22] Clausen, B.; Lorentzen, T., Experimental evaluation of a polycrystal deformation modeling scheme using neutron diffraction measurements, Metall. Mater. Trans. A, 28, 2537-2541, (1997)
[23] Clausen, B.; Lorentzen, T.; Leffers, T., Self-consistent modelling of the plastic deformation of F.C.C. polycrystals and its implications for diffraction measurements of internal stresses, Acta Mater., 46, 3087-3098, (1998)
[24] Mahesh, S.; Tomé, C.N.; McCabe, R.J.; etal., Application of a substructure-based hardening model to copper under loading path changes, Metall. Mater. Trans. A, 35, 3763-3774, (2004)
[25] Franz, G.; Abed-Meraim, F.; Berveiller, M., Strain localization analysis for single crystals and polycrystals: towards microstructure-ductility linkage, Int. J. Plast., 48, 1-33, (2013)
[26] Franz, G.; Abed-Meraim, F.; Lorrain, J.-P.; etal., Ellipticity loss analysis for tangent moduli deduced from a large strain elastic-plastic self-consistent model, Int. J. Plast., 25, 205-238, (2009) · Zbl 1162.74008
[27] Fernandes, J.V.; Schmitt, J.-H., Dislocation microstructures in steel during deep drawing, Philos. Mag. Phys. Condens. Matter Defects Mech. Prop., 48, 841-870, (1983)
[28] Nesterova, E.V.; Bacroix, B.; Teodosiu, C., Microstructure and texture evolution under strain-path changes in low-carbon interstitial-free steel, Metall. Mater. Trans. Phys. Metall. Mater. Sci., 32, 2527-2538, (2001)
[29] Feaugas, X., On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress, Acta Mater., 47, 3617-3632, (1999)
[30] Kocks U.F.: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. University Press, Cambridge (2000) · Zbl 0946.74002
[31] Lorrain, J.-P.; Ben-Zineb, T.; Abed-Meraim, F.; Berveiller, M., Ductility loss modelling for BCC single crystals, Int. J. Form. Process., 8, 135-158, (2005)
[32] Lipinski, P.; Berveiller, M., Elastoplasticity of micro-inhomogeneous metals at large strains, Int. J. Plast., 5, 149-172, (1989) · Zbl 0695.73013
[33] Gloaguen, D., Berchi, T., Girard, E., Guillen, R.: Prediction of intergranular strains using a modified self-consistent elastoplastic approach. Phys. Status Solidi Appl. Mater. Sci. 203, 12-14 (2006)
[34] Choteau, M.; Quaegebeur, P.; Degallaix, S., Modelling of bauschinger effect by various constitutive relations derived from thermodynamical formulation, Mech. Mater., 37, 1143-1152, (2005)
[35] Wenk, H.-R.; Matthies, S.; Donovan, J.; Chateigner, D., BEARTEX: a windows-based program system for quantitative texture analysis, J. Appl. Crystallogr., 31, 262-269, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.