Multifocality and recurrence risk: a quantitative model of field cancerization. (English) Zbl 1325.92044

Summary: Primary tumors often emerge within genetically altered fields of premalignant cells that appear histologically normal but have a high chance of progression to malignancy. Clinical observations have suggested that these premalignant fields pose high risks for emergence of recurrent tumors if left behind after surgical removal of the primary tumor. In this work, we develop a spatio-temporal stochastic model of epithelial carcinogenesis, combining cellular dynamics with a general framework for multi-stage genetic progression to cancer. Using the model, we investigate how various properties of the premalignant fields depend on microscopic cellular properties of the tissue. In particular, we provide analytic results for the size-distribution of the histologically undetectable premalignant fields at the time of diagnosis, and investigate how the extent and the geometry of these fields depend upon key groups of parameters associated with the tissue and genetic pathways. We also derive analytical results for the relative risks of local vs. distant secondary tumors for different parameter regimes, a critical aspect for the optimal choice of post-operative therapy in carcinoma patients. This study contributes to a growing literature seeking to obtain a quantitative understanding of the spatial dynamics in cancer initiation.


92C50 Medical applications (general)


Full Text: DOI arXiv Link


[1] Antal, T., Krapivsky, P.L., Nowak, M.A., 2013. Spatial Evolution of Tumors with Successive Driver Mutations. ArXiv e-prints.
[2] Armitage, P.; Doll, R., A two-stage theory of carcinogenesis in relation to the age distribution of human cancer, Br. J. Cancer, 11, (1957)
[3] Attolini, Camille Stephan-Otto; Michor, Franziska, Evolutionary theory of cancer, Ann. N.Y. Acad. Sci., 1168, 1, 23-51, (2009)
[4] Beerenwinkel, Niko; Antal, Tibor; Dingli, David; Traulsen, Arne; Kinzler, Kenneth W.; Velculescu, Victor E.; Vogelstein, Bert; Nowak, Martin A., Genetic progression and the waiting time to cancer, PLoS Comput. Biol., 3, 11, e225, (2007)
[5] Bertolusso, R.; Kimmel, M., Modeling spatial effects in early carcinogenesis: stochastic versus deterministic reaction-diffusion systems, Math. Model. Nat. Phenom., 7, 245-260, (2012) · Zbl 1320.92033
[6] Braakhuis, Boudewijn JM.; Tabor, Maarten P.; Leemans, C René; van der Waal, Isaac; Snow, Gordon B.; Brakenhoff, Ruud H., Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular techniques provide new insights and definitions, Head Neck, 24, 2, 198-206, (2002)
[7] Braakhuis, Boudewijn JM.; Tabor, Maarten P.; Kummer, J Alain; Leemans, C René; Brakenhoff, Ruud H., A genetic explanation of slaughter׳s concept of field cancerization evidence and clinical implications, Cancer Res., 63, 8, 1727-1730, (2003)
[8] Bramson, M.; Griffeath, D., On the Williams-bjerknes tumor growth modelii, Math. Proc. Camb. Philos. Soc., 88, 339-357, (1980) · Zbl 0459.92013
[9] Bramson, M.; Griffeath, D., On the Williams-bjerknes tumour growth modeli, Ann. Probab., 9, 173-185, (1981) · Zbl 0459.92012
[10] Chai, Hong; Brown, Robert E., Field effect in cancer—an update, Ann. Clin. Lab. Sci., 39, 4, 331-337, (2009)
[11] Durrett, R., Essentials of stochastic processes. Springer texts in statistics, (2012), Springer New York
[12] Durrett, R., Moseley, S., 2014. A spatial model for tumor growth. Ann. Appl. Probab., in press.
[13] Durett, R.; Schmidt, D.; Schweinsberg, J., A waiting time problem arising from the study of multi-stage carcinogenesis, Ann. Appl. Probab., 19, 676-718, (2009) · Zbl 1219.92038
[14] Durrett, R., Foo, J., Leder, K., 2014. Spatial Moran models II. Tumor growth and progression, in preparation. · Zbl 1344.60093
[15] Foo, J.; Leder, K.; Michor, F., Stochastic dynamics of cancer initiation, Phys. Biol., 8, 54-69, (2011)
[16] Iwasa, Y.; Michor, F.; Komarova, N.; Nowak, M., Population genetics of tumor suppressor genes, J. Theor. Biol., 233, 15-23, (2005)
[17] Klein, A. M.; Doupe, D. P.; Jones, P. H.; Simons, B. D., Mechanism of murine epidermal maintenancecell division and the voter model, Phys. Rev. E, 77, 3, (2007)
[18] Knudson, A., Two genetic hits (more or less) to cancer, Nat. Rev. Cancer, 1, 157-161, (2001)
[19] Komarova, N., Spatial stochastic models for cancer initiation and progression, Bull. Math. Biol., 68, 1573-1599, (2006) · Zbl 1334.92202
[20] Komarova, N., Spatial stochastic models of cancerfitness, migration, invasion, Math. Biosci. Eng., 10, 761-775, (2013) · Zbl 1268.92063
[21] Komarova, N. L.; Sengupta, A.; Nowak, M. A., Mutation-selection networks of cancer initiationtumor suppressor genes and chromosone instability, J. Theor. Biol., 223, 433-450, (2003)
[22] Leemans, C. R.; Braakhuis, B. J.M.; Brakenhoff, R. H., The molecular biology of head and neck cancer, Nat. Cancer Rev., 11, 9-22, (2011)
[23] Liggett, T., Stochastic interacting systemscontact, voter and exclusion processes, (1999), Springer Berlin
[24] Liggett, T.M., 2005. Interacting Particle Systems. Classics in Mathematics Series. Springer-Verlag, Berlin; GmbH & Company KG, Heidelberg. · Zbl 1103.82016
[25] Luebeck, G.; Moolgavkar, S., Multistage carcinogenesis and the incidence of colorectal cancer, Proc. Natl. Acad. Sci. USA, 99, 15095-15100, (2002)
[26] Martens, Erik A.; Hallatschek, Oskar, Interfering waves of adaptation promote spatial mixing, Genetics, 189, 3, 1045-1060, (2011)
[27] Martens, Erik A; Kostadinov, Rumen; Maley, Carlo C.; Hallatschek, Oskar, Spatial structure increases the waiting time for cancer, New J. Phys., 13, 11, 115014, (2011)
[28] Michor, F.; Iwasa, Y.; Nowak, M. A., The age incidence of chronic myeloid leukemia can be explained by a one-mutation model, Proc. Natl. Acad. Sci. USA, 103, 14931-14934, (2006)
[29] Nowak, M.; Michor, Y.; Iwasa, Y., The linear process of somatic evolution, Proc. Natl. Acad. Sci. USA, 100, 14966-14969, (2003)
[30] Schweinsberg, J., Waiting for n mutations, Electron. J. Probab., 13, 1442-1478, (2008) · Zbl 1191.60100
[31] Slaughter, Danely P.; Southwick, Harry W.; Smejkal, Walter, Field cancerization in oral stratified squamous epithelium. clinical implications of multicentric origin, Cancer, 6, 5, 963-968, (1953)
[32] Thalhauser, C.; Lowengrub, J.; Stupack, D.; Komarova, N., Selection in spatial stochastic models of cancermigration as a key modulator of fitness, Biol. Direct, 5, 21, (2010)
[33] Weinberg, R. A., The biology of cancer [with DVD ROM], (2013), Taylor & Francis Group New York
[34] Williams, T.; Bjerknes, R., Stochastic model for abnormal clone spread through epithelial basal layer, Nature, 236, 19-21, (1972)
[35] Wodarz, D.; Komarova, N. L., Can loss of apoptosis protect against cancer?, Trends Genet., 23, 232-237, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.