×

Cycle classes and Riemann-Roch for crystalline cohomology. (English) Zbl 0651.14014

Succinctly put this article proves the existence of a good cycle class map into crystalline cohomology tensored with the rationals, and consequently that the latter is a “Weil cohomology theory”. (This has also been proved - independently - by Gros.) More precisely the cycle class map is constructed using Chern classes so in order to prove compatability of the cycle class map with direct images the authors need to prove a Riemann-Roch theorem for crystalline cohomology. The proof follows closely the by now standard proof of Baum-Fulton-MacPherson with the difference that as crystalline cohomology only behaves well for smooth and proper varieties some care has to be taken with the “degeneration to the normal bundle” argument.
During the course of the proof the authors are able to lift the restriction that the scheme possess an ample line bundle in some of the results of SGA 6. Furthermore, in an appendix they give an axiomatic characterization of the product on Chow groups. - In another appendix the second author uses the results of the paper to prove that the crystalline cohomology of the special fibre of a smooth and proper scheme over an absolutely unramified discrete valuation with residue field of positive characteristic only depends on the general fibre.
Reviewer: T.Ekedahl

MSC:

14F30 \(p\)-adic cohomology, crystalline cohomology
14C40 Riemann-Roch theorems
14C99 Cycles and subschemes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Berthelot, Cohomologie cristalline des schémas de caractéristique \(p>0\) , Lecture Notes in Math., vol. 407, Springer-Verlag, Berlin, 1974. · Zbl 0298.14012
[2] 1 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I , Inst. Hautes Études Sci. Publ. Math. (1964), no. 20, 259. · Zbl 0136.15901 · doi:10.1007/BF02684747
[3] 2 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II , Inst. Hautes Études Sci. Publ. Math. (1965), no. 24, 231. · Zbl 0135.39701
[4] 3 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III , Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255. · Zbl 0144.19904 · doi:10.1007/BF02684343
[5] 4 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV , Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361. · Zbl 0153.22301
[6] P. Deligne, Séminaire de géométrie algébrique: Cohomologie étale , Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin, 1977. · Zbl 0345.00010
[7] P. Berthelot, A. Grothendieck, and L. Illusie, Séminaire de géométrie algébrique: Théorie des intersections et théorème de Riemann-Roch , Lecture Notes in Math., vol. 225, Springer-Verlag, Berlin, 1971. · Zbl 0218.14001
[8] P. Baum, W. Fulton, and R. MacPherson, Riemann-Roch for singular varieties , Inst. Hautes Études Sci. Publ. Math. (1975), no. 45, 101-145. · Zbl 0332.14003 · doi:10.1007/BF02684299
[9] P. Berthelot and L. Illusie, Classes de Chern en cohomologie cristalline , C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1695-A1697; ibid. 270 (1970), A1750-A1752. · Zbl 0198.26201
[10] P. Berthelot and W. Messing, Théorie de Dieudonné cristalline III , · Zbl 0414.14014
[11] P. Berthelot and W. Messing, Théorie de Dieudonné cristalline. I , Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. I, Astérisque, vol. 63, Soc. Math. France, Paris, 1979, pp. 17-37. · Zbl 0414.14014
[12] P. Berthelot and A. Ogus, Notes on crystalline cohomology , Mathematical Notes, vol. 21, Princeton Univ. Press, Princeton, N.J., 1978. · Zbl 0383.14010
[13] P. Berthelot and A. Ogus, \(F\)-isocrystals and de Rham cohomology. I , Invent. Math. 72 (1983), no. 2, 159-199. · Zbl 0516.14017 · doi:10.1007/BF01389319
[14] R. Elkik, L’équivalence rationnelle , Séminaire de géométrie analytique (École Norm. Sup., Paris, 1974-75), Astérique, vol. 36-37, Suc. Math. France, Paris, 1976, pp. 35-63. · Zbl 0346.14004
[15] J-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate , Journées de géométrie algébrique de Rennes. (Rennes, 1978), Vol. III, Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 3-80. · Zbl 0429.14016
[16] J-M. Fontaine, Sur certains types de représentations \(p\)-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate , Ann. of Math. (2) 115 (1982), no. 3, 529-577. JSTOR: · Zbl 0544.14016 · doi:10.2307/2007012
[17] J.-M. Fontaine and W. Messing, Constructing \(p\)-adic étale cohomology , in preparation. · Zbl 0632.14016
[18] W. Fulton, Intersection theory , Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. · Zbl 0885.14002
[19] W. Fulton and R. MacPherson, Intersecting cycles on an algebraic variety , Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 179-197. · Zbl 0385.14002
[20] H. Gillet, The applications of \(K\)-theory to intersection theory , Thesis, Harvard University, 1978.
[21] H. Gillet, Riemann-Roch theorems for higher algebraic \(K\)-theory , Adv. in Math. 40 (1981), no. 3, 203-289. · Zbl 0478.14010 · doi:10.1016/S0001-8708(81)80006-0
[22] H. Gillet, Comparison of \(K\)-theory spectral sequences, with applications , Algebraic \(K\)-theory, Evanston, 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math., vol. 854, Springer-Vrelag, Berlin, 1981, pp. 141-167. · Zbl 0478.14011
[23] H. Gillet, Universal cycle classes , Compositio Math. 49 (1983), no. 1, 3-49. · Zbl 0538.14009
[24] H. Gillet, \(K\)-theory and intersection theory revisited , · Zbl 0651.14001 · doi:10.1007/BF00539625
[25] D. Grayson, Products in \(K\)-theory and intersecting algebraic cycles , Invent. Math. 47 (1978), no. 1, 71-83. · Zbl 0394.14004 · doi:10.1007/BF01609480
[26] M. Gros, Classes de Chern et classes de cycles en cohomologie logarithmique , Orsay, 1983, thèse de \(3^\circ\) cycle. · Zbl 0615.14011
[27] A. Grothendieck, Sur quelques propriétés fondamentales en théorie des intersections , Sém. C. Chevalley 2^e annee, Anneaux de Chow et applications, Secr. Math., Paris, 1958.
[28] A. Grothendieck, La théorie des classes de Chern , Bull. Soc. Math. France 86 (1958), 137-154. · Zbl 0091.33201
[29] R. Hartshorne, On the De Rham cohomology of algebraic varieties , Inst. Hautes Études Sci. Publ. Math. (1975), no. 45, 5-99. · Zbl 0326.14004 · doi:10.1007/BF02684298
[30] S. Kleiman, Algebraic cycles and the Weil conjectures , Dix esposés sur la cohomologie de schémas, North Holland, Amsterdam, 1968, pp. 359-386. · Zbl 0198.25902
[31] M. Nagata, Imbedding of an abstract variety in a complete variety , J. Math. Kyoto Univ. 2 (1962), 1-10. · Zbl 0109.39503
[32] D. Quillen, Higher algebraic \(K\)-theory 1 , Algebraic \(K\)-theory, I: Higher \(K\)-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin, 1973, pp. 85-147. · Zbl 0292.18004
[33] J. Roberts, Chow’s moving lemma , Algebraic Geometry, Oslo, 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff Publ., Groningen, 1972, pp. 89-96.
[34] C. Soulé, Operations en \(K\)-theorie algébrique , preprint, 1983.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.