zbMATH — the first resource for mathematics

Fuzzy sets on 2D spaces for fineness representation. (English) Zbl 1343.68268
Summary: The analysis of the perceptual properties of texture plays a fundamental role in tasks like semantic description of images, content-based image retrieval using linguistic queries, or expert systems design based on low level visual features. In this paper, we propose a methodology to model texture properties by means of fuzzy sets defined on bidimensional spaces. In particular, we have focused our study on the fineness property that is considered as the most important feature for human visual interpretation. In our approach, pairwise combinations of fineness measures are used as a reference set, which allows to improve the ability to capture the presence of this property. To obtain the membership functions, we propose to learn the relationship between the computational values given by the measures and the human perception of fineness. The performance of each fuzzy set is analyzed and tested with the human assessments, allowing us to evaluate the goodness of each model and to identify the most suitable combination of measures for representing the fineness presence.
68U10 Computing methodologies for image processing
Full Text: DOI
[1] Russ, J. C., The image processing handbook, (1999), CRC Press and IEEE Press · Zbl 0931.68133
[2] Tuceryan, M.; Jain, A. K., The handbook of pattern recognition and computer vision, 207-248, (1998), World Scientific Publishing Co., Ch. Texture Analysis
[3] Rao, A. R.; Lohse, G. L., Identifying high level features of texture perception, Graph. Models Image Process., 55, 3, 218-233, (1993)
[4] Tamura, H.; Mori, S.; Yamawaki, T., Textural features corresponding to visual perception, IEEE Trans. Syst. Man Cybern., 8, 460-473, (1978)
[5] Han, J.; Ma, K. K., Rotation-invariant and scale-invariant Gabor features for texture image retrieval, Image Vis. Comput., 25, 9, 1474-1481, (2007)
[6] Zhang, D.; Wong, A.; Indrawan, M.; Lu, G., Content-based image retrieval using Gabor texture features, (Proceedings of the IEEE Pacific-Rim Conference on Multimedia, Sydney, Australia, (2000)), 392-395
[7] Guang-mei, X.; Wen, H.; Hai-ying, Z.; Hong, B., A new metric algorithm of image textural coarseness, (Proceedings of the 2010 International Conference on Computer Application and System Modeling, vol. 11, (2010)), 544-548
[8] Xie, X., A review of recent advances in surface defect detection using texture analysis techniques, Electron. Lett. Comput. Vis. Image Anal., 7, 3, 1-22, (2008)
[9] Arivazhagan, S.; Ganesan, L., Texture classification using wavelet transform, Pattern Recognit. Lett., 24, 9-10, 1513-1521, (2003) · Zbl 1048.68073
[10] Hiremath, P. S.; Shivashankar, S., Wavelet based features for texture classification, ICGST Int. J. Graph. Vis. Image Process., 6, 3, 55-58, (2006)
[11] Ma, W. Y.; Manjunath, B. S., A comparison of wavelet transform features for texture image annotation, (Proceedings of the IEEE International Conference on Image Processing, vol. 2, Washington, DC, USA, (1995)), 256-259
[12] Li, M.; Staunton, R. C., Optimum Gabor filter design and local binary patterns for texture segmentation, Pattern Recognit. Lett., 29, 5, 664-672, (2008)
[13] Scarpa, G.; Gaetano, R.; Haindl, M.; Zerubia, J., Hierarchical multiple Markov chain model for unsupervised texture segmentation, IEEE Trans. Image Process., 18, 8, 1830-1843, (2009) · Zbl 1371.94328
[14] Lehmann, F., Turbo segmentation of textured images, IEEE Trans. Pattern Anal. Mach. Intell., 33, 1, 16-29, (2011)
[15] Arivazhagan, S.; Ganesan, L.; Priyal, S. P., Texture classification using Gabor wavelets based rotation invariant features, Pattern Recognit. Lett., 27, 16, 1976-1982, (2006)
[16] Guo, Z.; Zhang, L.; Zhang, D., Rotation invariant texture classification using LBP variance (LBPV) with global matching, Pattern Recognit., 43, 3, 706-719, (2010) · Zbl 1187.68457
[17] Pietikäinen, M.; Hadid, A.; Zhao, G.; Ahonen, T., Texture classification and segmentation, (Computer Vision Using Local Binary Patterns, Computational Imaging and Vision, vol. 40, (2011), Springer London), 69-79
[18] Kokare, M.; Biswas, P. K.; Chatterji, B. N., Texture image retrieval using rotated wavelet filters, Pattern Recognit. Lett., 28, 10, 1240-1249, (2007)
[19] Yue, J.; Li, Z.; Liu, L.; Fu, Z., Content-based image retrieval using color and texture fused features, Math. Comput. Model., 54, 3-4, 1121-1127, (2011)
[20] Portilla, J.; Simoncelli, E. P., A parametric texture model based on joint statistics of complex wavelet coefficients, Int. J. Comput. Vis., 40, 49-71, (2000) · Zbl 1012.68698
[21] Xu, G.; Hong, Y., A fast texture synthesis method based on cooccurrence matrix analysis, (Proceedings of the 2nd IEEE International Conference on Computer Science and Information Technology (ICCSIT), (2009)), 536-540
[22] Zalesny, A.; Gool, L. V., A compact model for viewpoint dependent texture synthesis, (Proceedings of the 2nd European Workshop on 3D Structure from Multiple Images of Large-Scale Environments (SMILE), Lecture Notes in Computer Science, vol. 2018, (2001), Springer), 124-143 · Zbl 0977.68573
[23] Battiato, S.; Gallo, G.; Nicotra, S., Perceptive visual texture classification and retrieval, (Proceedings of the 12th International Conference on Image Analysis and Processing, Washington, DC, USA, (2003)), 524-529
[24] Manjunath, B. S., Introduction to MPEG-7, multimedia content description interface, (2002), John Wiley and Sons, Ltd.
[25] Nirmala, M.; Karthikeyan, K.; Appalabatla, S.; Ahmed, R. A., Image interpretation based on similarity measures of visual content descriptors. an insight, Int. J. Comp. Sci. Emerg. Technol., 2, 2, 242-248, (2011)
[26] Aboulmagd, H.; El-Gayar, N.; Onsi, H., A new approach in content-based image retrieval using fuzzy, Telecommun. Syst., 40, 1, 55-66, (2009)
[27] Flicker, M.; Sawhney, H.; Niblack, W.; Ashley, J.; Huang, Q.; Dom, B.; Gorkani, M.; Hafner, J.; Lee, D.; Petkovic, D.; Steele, D.; Yanker, P., Query by image and video content: the QBIC system, IEEE Comput., 28, 9, 23-32, (1995)
[28] Lin, H. C.; Chiu, C. Y.; Yang, S. N., Finding textures by textual descriptions, visual examples, and relevance feedbacks, Pattern Recognit. Lett., 24, 14, 2255-2267, (2003) · Zbl 1047.68129
[29] Haralick, R. M., Statistical and structural approaches to texture, Proc. IEEE, 67, 5, 786-804, (1979)
[30] Amadasun, M.; King, R., Textural features corresponding to textural properties, IEEE Trans. Syst. Man Cybern., 19, 5, 1264-1274, (1989)
[31] Abbadeni, N.; Ziou, N.; Wang, D. S., Autocovariance-based perceptual textural features corresponding to human visual perception, (Proceedings of the 15th International Conference on Pattern Recognition, vol. 3, Barcelona, Spain, (2000)), 901-904
[32] Huang, X., Automatic video text detection and localization based on coarseness texture, (Proceedings of the Fifth International Conference on Intelligent Computation Technology and Automation, (2012)), 398-401
[33] Nachtegael, M.; Kerre, E.; Damas, S.; der Weken, D. V., Special issue on recent advances in soft computing in image processing, Int. J. Approx. Reason., 50, 1, 1-2, (2009) · Zbl 1198.68053
[34] Solana-Cipres, C.; Fernandez-Escribano, G.; Rodriguez-Benitez, L.; Moreno-Garcia, J.; Jimenez-Linares, L., Real-time moving object segmentation in H.264 compressed domain based on approximate reasoning, Int. J. Approx. Reason., 51, 1, 99-114, (2009)
[35] Chiu, C. Y.; Lin, H. C.; Yang, S. N., A fuzzy logic CBIR system, (Proceedings of the 12th IEEE International Conference on Fuzzy Systems, vol. 2, St. Louis, MO, USA, (2003)), 1171-1176
[36] Kulkarni, S.; Verma, B., Fuzzy logic based texture queries for CBIR, (Proceedings of the 5th International Conference on Computational Intelligence and Multimedia Applications, Xi’an, China, (2003)), 223-228
[37] Verma, B.; Kulkarni, S., A fuzzy-neural approach for interpretation and fusion of colour and texture features for CBIR systems, Appl. Soft Comput., 5, 1, 119-130, (2004)
[38] Chamorro-Martínez, J.; Martínez-Jiménez, P., A comparative study of texture coarseness measures, (Proceedings of the 16th IEEE International Conference on Image Processing, Cairo, Egypt, (2009)), 1337-1340
[39] Chamorro-Martinez, J.; Martinez-Jimenez, P. M.; Soto-Hidalgo, J. M.; Prados-Suarez, B., Perception-based fuzzy sets for visual texture modelling, Soft Comput., 18, 12, 2485-2499, (2014)
[40] Zucker, S. W.; Terzopoulos, D., Finding structure in co-occurrence matrices for texture analysis, Comput. Graph. Image Process., 12, 3, 286-308, (1980)
[41] Mandelbrot, B. B., The fractal geometry of nature, (1982), Freeman San Francisco · Zbl 0504.28001
[42] Peleg, S.; Naor, J.; Hartley, R.; Avnir, D., Multiple resolution texture analysis and classification, IEEE Trans. Pattern Anal. Mach. Intell., 6, 4, 518-523, (1984)
[43] Galloway, M. M., Texture analysis using gray level run lengths, Comput. Graph. Image Process., 4, 172-179, (1975)
[44] Sun, C.; Wee, W. G., Neighboring gray level dependence matrix for texture classification, Comput. Vis. Graph. Image Process., 23, 341-352, (1983)
[45] Kim, S. I.; Choi, K. C.; Lee, D. S., Texture classification using run difference matrix, (Proceedings of the 1991 IEEE Ultrasonics Symposium, vol. 2, Orlando, FL, USA, (1991)), 1097-1100
[46] Weszka, J. S.; Dyer, C. R.; Rosenfeld, A., A comparative study of texture measures for terrain classification, IEEE Trans. Syst. Man Cybern., 6, 4, 269-285, (1976) · Zbl 0322.68061
[47] Newsam, S. D.; Kammath, C., Retrieval using texture features in high resolution multi-spectral satellite imagery, (Proceedings of Data Mining and Knowledge Discovery: Theory, Tools, and Technology VI, Orlando, FL, USA, Proc. SPIE, vol. 5433, (2004)), 21-32
[48] Yoshida, H.; Casalino, D. D.; Keserci, B.; Coskun, A.; Ozturk, O.; Savranlar, A., Wavelet-packet-based texture analysis for differentiation between benign and malignant liver tumours in ultrasound images, Phys. Med. Biol., 48, 3735-3753, (2003)
[49] Brodatz, P., Textures: A photographic album for artists and designers, (1966), Dover Publishing Co.
[50] Yager, R. R., On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Trans. Syst. Man Cybern., 18, 1, 183-190, (1988) · Zbl 0637.90057
[51] Huber, P. J., Robust statistics, Wiley Series in Probability and Mathematical Statistics, (1981), J. Wiley & Sons New York, Brisbane, Toronto · Zbl 0536.62025
[52] Beaton, A. E.; Tukey, J. W., The Fitting of power series, meaning polynomials, illustrated on band-spectroscopic data, Technometrics, 16, 147-185, (1974) · Zbl 0282.62057
[53] Kendall, M. G., A new measure of rank correlation, Biometrika, 30, 1/2, 81-93, (1938) · Zbl 0019.13001
[54] Spearman, C., The proof and measurement of association between two things, Am. J. Psychol., 15, 72-101, (1904)
[55] Fisher, R. A., Statistical methods for research workers, cosmo study guides, (1925), Cosmo Publications
[56] Tripathy, S. S.; Shekhar, R.; Kumar, R. S., Texture retrieval system using intuitionistic fuzzy set theory, (Proceedings of the 2011 International Conference on Devices and Communications, Jharkhand, India, (2011)), 1-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.