zbMATH — the first resource for mathematics

Global existence and nonexistence for semilinear parabolic systems with nonlinear boundary conditions. (English) Zbl 0652.35065
In a weak Hilbert space setting the semilinear parabolic Cauchy problem \[ \dot u+{\mathcal A}u=F(u),\quad u(0)=u_ 0 \] is considered, where -A generates a strongly continuous analytic semigroup. For certain classes of data \((F,u_ 0)\) regularity results and asymptotic behaviour of the solution are derived. These results are applied to prove global existence and “blow up” behaviour of semilinear parabolic systems with nonlinear boundary conditions of the form \[ \partial_ tu+{\mathcal A}u=f(\cdot,u)\quad in\quad \Omega \times (0,\infty);\quad {\mathcal B}u=g(\cdot,u)\quad on\quad \partial \Omega \times (0,\infty);\quad u(\cdot,0)=u_ 0\quad on\quad \Omega, \] where \(\Omega\) is a bounded domain in \({\mathbb{R}}^ n \)with smooth boundary \(\partial \Omega\), f and g are polynomially bounded smooth vector valued functions and (\({\mathcal A},{\mathcal B})\) defines a formally self-adjoint regular elliptic boundary value problem of second order.
Reviewer: J.Escher

35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
47D03 Groups and semigroups of linear operators
35B40 Asymptotic behavior of solutions to PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35K15 Initial value problems for second-order parabolic equations
Full Text: DOI EuDML
[1] Amann, H.: Periodic solutions of semilinear parabolic equations. In: Nonlinear analysis: a collection of papers in honour of Erich H. Rothe, 1-29. New York: Academic Press 1978
[2] Amann, H.: Dual semigroups and second order linear elliptic boundary value problems. Isr. J. Math.45, 225-254 (1983) · Zbl 0535.35017 · doi:10.1007/BF02774019
[3] Amann, H.: Existence and regularity for semilinear parabolic evolutions equations. Ann. Sc. Norm. Super. Pisa Ser. IV,XI, 593-676 (1984) · Zbl 0625.35045
[4] Amann, H.: Global existence for semilinear parabolic systems. J. Reine Angew. Math.366, 47-84 (1985) · Zbl 0564.35060 · doi:10.1515/crll.1985.360.47
[5] Amann, H.: Semigroups and nonlinear evolutions equations. Linear Algebra Appl.84, 3-32 (1986) · Zbl 0624.35047 · doi:10.1016/0024-3795(86)90305-8
[6] Amann, H.: Parabolic evolutions equations and nonlinear boundary conditions. J. Differ. Equations72, 201-269 (1988) · Zbl 0658.34011 · doi:10.1016/0022-0396(88)90156-8
[7] Amann, H.: Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations. Nonlinear Anal., Theory Methods Appl.12, 895-919 (1988) · Zbl 0666.35043 · doi:10.1016/0362-546X(88)90073-9
[8] Ball, J.M.: Remarks on blow-up and nonexistence theorems for nonlinear evolutions equations. Quart. J. Math., Oxf. II. Ser.28, 473-486 (1977) · Zbl 0377.35037 · doi:10.1093/qmath/28.4.473
[9] Chipot, M., Weissler, F.B.: Some blow up results for a nonlinear parabolic equation with a gradient term. To appear · Zbl 0682.35010
[10] Friedman, A., McLoed, J.B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J.34, 425-447 (1985) · Zbl 0576.35068 · doi:10.1512/iumj.1985.34.34025
[11] Grisvard, P.: Equations différentielles abstraits. Ann. Sci. Ec. Norm. Super., Sér. 42, 311-395 (1969) · Zbl 0193.43502
[12] Kielhöfer, H.: Global solutions of semilinear evolutions equations satisfying an energy inequality. J. Differ. Equations36, 188-222 (1980) · Zbl 0423.34088 · doi:10.1016/0022-0396(80)90063-7
[13] Levine, H.A., Payne, L.E.: Some nonexistence theorems for initial-boundary value problems with nonlinear boundary constraints. Proc. Am. Math. Soc.46, 277-284 (1978) · Zbl 0293.35004
[14] Levine, H.A.: Stability and instability for solutions of Burger’s equation with a nonlinear boundary condition. SIAM. J. Math. Anal.19, 312-336 (1988) · Zbl 0696.35159 · doi:10.1137/0519023
[15] Levine, H.A., Smith, R.: A potential well theory for the heat equation with a nonlinear boundary condition. To appear · Zbl 0646.35049
[16] Sattinger, D.H.: On global solution of nonlinear hyperbolic equations. Arch. Rat. Mech. Anal.30, 148-172 (1968) · Zbl 0159.39102 · doi:10.1007/BF00250942
[17] Seeley, R.: Interpolation inL p with boundary conditions. Studia Math.44, 47-60 (1972) · Zbl 0237.46041
[18] Triebel, H.: Interpolation theory, function spaces, differential operators. Amsterdam: North Holland 1978 · Zbl 0387.46032
[19] Vainberg, M.M.: Variational methods for the study of nonlinear operators. San Francisco London Amsterdam: Holden Day 1964
[20] Walker, J.A.: Dynamical systems and evolution equations, theory and applications. New York: Plenum Press 1980 · Zbl 0421.34050
[21] Yosida, K.: Functional analysis. Berlin Heidelberg New York: Springer 1965 · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.