zbMATH — the first resource for mathematics

A homogeneous Dirichlet problem for a nonlinear partial differential equation in an anisotropic Sobolev space. (English) Zbl 0652.47033
The author solves a homogeneous Dirichlet problem for a quasilinear partial differential operator by showing that under certain conditions this operator generates a coercive pseudo-monotone operator from an appropriate anisotropic Sobolev space onto its dual.
Reviewer: Simeon Reich
47H05 Monotone operators and generalizations
47F05 General theory of partial differential operators
30G30 Other generalizations of analytic functions (including abstract-valued functions)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI EuDML
[1] Adams, R. A.,Sobolev spaces. Academic Press, New York–San Francisco–London, 1975. · Zbl 0314.46030
[2] Benedetto, J. J.,Real variable and integration. B. G. Teubner, Stuttgart, 1976. · Zbl 0336.26001
[3] Boman, J.,Supremum norm estimates for partial derivatives of functions of several variables. Illinois J. Math.16 (1972) 203–216. · Zbl 0244.46043
[4] Browder, F. E.,Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Nat. Acad. Sci. USA74 (1977) 2659–2661. · Zbl 0358.35034
[5] Doppel, K.,Lectures given at the Banach Center. Warszawa (1984).
[6] Jacob, N.,On generalized Dirichlet problems. Math. Scand.55 (1984) 245–252. · Zbl 0538.35015
[7] Jacob, N. andSchomburg, B.,On Gårding’s inequality. Aequationes Math.31 (1986), 7–17. · Zbl 0635.35011
[8] Kufner, A.,Some modifications of Sobolev spaces and non-linear boundary value problems. In Equadiff IV. (Lecture Notes in Math. Vol. 703.) Springer, Berlin-Heidelberg-New York, 1979, pp. 213–223. · Zbl 0404.35042
[9] Kufner, A.,Nichtlineare partielle Differentialgleichungen und spezielle Funktionenräume. Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturwiss. R.,29 (1980) 59–64. · Zbl 0434.35045
[10] Kufner, A. andRakosnik, J.,Boundary value problems for nonlinear partial differential equations in anisotropic Sobolev spaces. Čas. Pěstovani Mat.106 (1981) 170–185. · Zbl 0468.35023
[11] Warnecke–Lähnemann, G.,Über das homogene Dirichlet-Problem bei nichtlinearen partiellen Differentialgleichungen vom Typ der Boussinesq-Gleichung. Inaugural-Dissertation. FU Berlin, 1985. · Zbl 0594.35086
[12] Yosida, K.,Functional analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1978. · Zbl 0365.46001
[13] Zeidler, E.,Vorlesungen über nichtlineare Funktional-analysis II – Monotone Operatoren. Teubner Verlag, Leipzig, 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.