×

Sequentially determined convergence spaces. (English) Zbl 0652.54001

From the authors introduction: If \(\lambda\) is a convergence structure and \(\Lambda\) (\(\lambda)\) is the set of all first countable convergence structures having the same convergent sequences, the problem is to choose a “special” convergence structure in \(\Lambda\) (\(\lambda)\). \(\Lambda\) (\(\lambda)\) is a complete lattice with largest and smallest elements. Convergence spaces obtained from the largest element were introduced by Frič and are called sequential. Here the authors study the convergence spaces which arise from the smallest element, which they call sequentially determined.
Reviewer: P.R.Meyer

MSC:

54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
54D55 Sequential spaces

References:

[1] Antosik P.: Matrix Mathods in Analysis. Lecture Notes in Mathematics 1113, Springer- Verlag Berlin-Heidelberg-New York-Tokyo 1985.
[2] Binz E.: Continuous Convergence on C(X). Lecture Notes in Mathematics 469, Springer-Verlag Berlin-Heidelberg-New York 1975. · Zbl 0306.54003
[3] Beattie R.: Convergence spaces with webs. Math. Nachr. 116 (1984), 159-164. · Zbl 0574.46005 · doi:10.1002/mana.19841160111
[4] Beattie R.: The closed graph theorem in convergence spaces with webs, Convergence Structures and Applications II. Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.- Technik N2 (1984), 9-13. · Zbl 0574.46005
[5] Beattie R.: A convenient category for the closed graph theorem. Categorical Topology, Proc. Conference Toledo, Ohio 1983, Heldermann Verlag Berlin 1984, 29-45.
[6] Beattie R., Butzmann H.-P.: Strongly first countable convergence spaces, to appear in: Proceedings of the Conference on Convergence. Bechyně ČSSR 1984. · Zbl 0579.54002
[7] Beattie R., Butzmann H.-P, and Herrlich H.: Filter convergence via sequential convergence. submitted. · Zbl 0591.54003
[8] Butzmann H.-P., Beattie R.: Some relations between sequential and filter convergence. to appear in: Proceedings of the Conference on Convergence, Bechyně, ČSSR 1984. · Zbl 0579.54003
[9] Frič R.: On convergence spaces and groups. Math. Slovaca 27 (1977), 323 - 330.
[10] Frič R.: On completions of Cauchy spaces. Proc. Conf. on Convergence (Szczyrk, 1979). Polsk. Acad. Nauk, Oddzial w Katowicach, Katowice, 1980, 24-28.
[11] Frič R., Kent D. C: On c-embedded sequential convergence spaces. Convergence Structures and Applications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik N4 (1979), 33-36. · Zbl 0457.54002
[12] Frič R., Kent D. C: Completions of pseudotopological groups. Math. Nachr. 99 (1980), 99-103. · Zbl 0477.22001 · doi:10.1002/mana.19800990113
[13] Frič R., Koutník V.: Sequential structures. Convergence Structures and Applications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik N4 (1979), 37-56.
[14] Frič R., Koutnik V.: Recent development in sequential convergence. Convergence Structures and Applications II, Abh. Akad. Wiss. DDR, Abt.Math.-Naturwiss.- Technik N2 (1984), 37-46. · Zbl 0567.54002
[15] Frič R., McKennon K., Richardson G. D.: Sequential convergence in C(X). Convergence Structures and Applications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik N4 (1979), 57-65.
[16] Gähler W.: Grundstrukturen der Analysis I, II. Birkhäuser-Verlag Berlin-Basel 1977, 1979. · Zbl 0351.54001
[17] Kranzler S. K., McDermott T. S.: Continuous extension of sequentially continuous linear functional in inductive limits of normed spaces. Czech. Math. J. 25 (100) (1975), 190-201. · Zbl 0337.46005
[18] Novák J.: On completions of convergence commutative groups. General Topology and it Relations to Modern Analysis and Algebra III, Academia, Praha 1972, 335- 340.
[19] Rießinger T.: Konvergenzen und Limitierungen. Master’s Thesis, Mannheim 1985.
[20] Schroder M.: Solid convergence spaces. Bull. Austral. Math. Soc. 8 (1973), 443 - 459. · Zbl 0254.54003 · doi:10.1017/S0004972700042738
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.