Duplantier, Bertrand Intersections of random walks. A direct renormalization approach. (English) Zbl 0652.60073 Commun. Math. Phys. 117, No. 2, 279-329 (1988). Summary: Various intersection probabilities of independent random walks in d dimensions are calculated analytically by a direct renormalization method, adapted from polymer physics. This heuristic approach, based on S. F. Edwards’ continuum model [Proc. Phys. Soc. 85, 613 ff. (1965)], leads to a straightforward derivation and also to refinements of G. F. Lawler’s results [e.g.: Commun. Math. Phys. 97, 583-594 (1985; Zbl 0585.60069), and Contemp. Math. 41, 281-289 (1985; Zbl 0568.60066)] for the simultaneous intersections of two walks in \({\mathbb{Z}}^ 4,\) or three walks in \({\mathbb{Z}}^ 3.\) These results are generalized to P walks in \({\mathbb{Z}}^{d\quad *}\), d \(*=2P/(P-1)\), \(P\geq 2.\) For \(d<4\), an infinite set of universal critical exponents \(\sigma_ L\), \(L\geq 1\), are derived. They govern the asymptotic probability \({\mathcal Z}_ L\sim S^{\sigma_ L}\) that L “star walks” in \({\mathbb{R}}^ d,\) with a common origin, do not intersect before time S. The \(\sigma_ L's\) are calculated up to order O(\(\epsilon\) 2), where \(d=4-\epsilon\). This information is used to calculate the probability \({\mathcal Z}({\mathcal G})\) that a set of independent random walks in \({\mathbb{R}}^ d \)or \({\mathbb{Z}}^ d,\) \(d\leq 4\), (respectively \(d\leq 3)\) form a given topological network \({\mathcal G}\) of multiple intersection points, in the absence of any other double point (respectively triple point). This is generalized to a network in \(d\leq 2P/(P-1)\) dimensions with the exclusion of P-tuple points. The method is quite general and can be used to calculate any critical intersection probability, and provides the probabilist with a large variety of exact results (yet to be proven rigorously). Cited in 14 Documents MSC: 60G50 Sums of independent random variables; random walks 82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses) Keywords:intersection probabilities of independent random walks; polymer physics; critical exponents; multiple intersection points Citations:Zbl 0585.60069; Zbl 0568.60066 PDFBibTeX XMLCite \textit{B. Duplantier}, Commun. Math. Phys. 117, No. 2, 279--329 (1988; Zbl 0652.60073) Full Text: DOI References: [1] Dvoretzky, A., Erdös, P., Kakutani, S.: Double points of Brownian paths in n-space. Acta Sci. Math.12, 75-81 (1950) · Zbl 0036.09001 [2] Erdös, P., Taylor, S.J.: Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hung.11, 137-162 (1960) · Zbl 0091.13303 · doi:10.1007/BF02020631 [3] Erdös, P., Taylor, S.J.: Some intersection properties of random walk paths. Acta Math. Acad. Sci. Hung.11, 231-248 (1960) · Zbl 0096.33302 · doi:10.1007/BF02020942 [4] Lawler, G.F.: A self-avoiding random walk. Duke Math. J.47, 655-693 (1980) · Zbl 0445.60058 · doi:10.1215/S0012-7094-80-04741-9 [5] Brydges, D., Spencer, T.: Self-avoiding walks in 5 or more dimensions. Commun. Math. Phys.97, 125 (1985) · Zbl 0575.60099 · doi:10.1007/BF01206182 [6] Aizenman, M.: Geometric analysis of ?4 fields and Ising models. Parts I and II. Commun. Math. Phys.86, 1 (1982) · Zbl 0533.58034 · doi:10.1007/BF01205659 [7] Brydges, D.C., Fröhlich, J., Spencer, T.: The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys.83, 123 (1982) · doi:10.1007/BF01947075 [8] Brydges, D.C., Fröhlich, J., Sokal, A.D.: The random walk representation of classical spin systems and correlation inequalities. II. The Skeleton inequalities. Commun. Math. Phys.91, 117 (1983) · doi:10.1007/BF01206055 [9] Brydges, D.C., Fröhlich, J., Sokal, A.D.: A new proof of the existence and nontriviality of the continuum ?4 2 and ?4 3 quantum field theories. Commun. Math. Phys.91, 141 (1983) · doi:10.1007/BF01211157 [10] Aragão de Carvalho, C., Caracciolo, S., Fröhlich, J.: Polymers andg|?|4 theory in four dimensions. Nucl. Phys. B215 [FS7], 209 (1983) · doi:10.1016/0550-3213(83)90213-4 [11] Aizenman, M.: The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory. Commun. Math. Phys.97, 91 (1985) · Zbl 0573.60076 · doi:10.1007/BF01206180 [12] Felder, G., Fröhlich, J.: Intersection properties of simple random walks: a renormalization group approach. Commun. Math. Phys.97, 111 (1985) · Zbl 0573.60065 · doi:10.1007/BF01206181 [13] Lawler, G.F.: The probability of intersection of independent random walks in four dimensions. Commun. Math. Phys.86, 539-554 (1982) · Zbl 0502.60057 · doi:10.1007/BF01214889 [14] Lawler, G.F.: Intersections of random walks in four dimensions. II. Commun. Math. Phys.97, 583-594 (1985); Intersections of simple random walks. Contemp. Math.41, 281-289 (1985) · Zbl 0585.60069 · doi:10.1007/BF01221219 [15] Lawler, G.F.: The probability of intersection of three random walks in three dimensions. Duke University Preprint · Zbl 0502.60057 [16] Le Gall, J.-F.: Propriétés d’intersection des marches aléatoires. I. Convergence vers le temps local d’intersection. Commun. Math. Phys.104, 471 (1986) · Zbl 0609.60078 · doi:10.1007/BF01210952 [17] Le Gall, J.-F.: Propriétés d’intersection des marches aléatoires. II. Etude des cas critiques. Commun. Math. Phys.104, 505-524 (1986) [18] Rosen, J.: Random walks and intersection local time (to be published) [19] Yor, M.: Renormalisation et convergence en loi pour les temps locaux d’intersection du mouvement brownien dans ?3. In: Séminaire de probabilités XIX. Lecture Notes in Mathematics, Vol. 1123, pp. 350-365. Berlin, Heidelberg, New York: Springer 1985, and references theirein [20] des Cloizeaux, J.: Polymers in solution: Principles and applications of a direct renormalization method. J. Phys.42, 635 (1981) · Zbl 0473.57001 [21] Duplantier, B.: Critical amplitudes of Edwards’ continuous polymer chain model. J. Phys.47, 1865 (1986) [22] Duplantier, B.: Polymer chains in four dimensions. Nucl. Phys. B275 [FS17], 319 (1986) · doi:10.1016/0550-3213(86)90602-4 [23] de Gennes, P.G.: Scaling concepts in polymer physics. Ithaca, London, Cornell University Press 1979 [24] Joanny, J.F., Leibler, L., Ball, R.: Is chemical mismatch important in polymer solutions? J. Chem. Phys.81, 4640 (1984) · doi:10.1063/1.447399 [25] de Gennes, P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett.38, 339 (1972) · doi:10.1016/0375-9601(72)90149-1 [26] des Cloizeaux, J.: The Lagrangian theory of polymer solutions at intermediate concentration. J. Physique36, 281 (1975) [27] Duplantier, B.: Chaînes polymères et champ à zéro composante. C.R. Acad. Sci. Paris290, 199 (1980) [28] Symanzik, K.: Euclidean quantum field theory. In: Local quantum theory. Jost R. (ed.). New York, London: Academic Press 1969 [29] Phase Transitions and Critical Phenomena. Domb, C., Green, M.S. (eds), Vol. 6, New York, London: Academic Press 1976 [30] Edwards, S.F.: The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc.85, 613 (1965) · Zbl 0125.23205 · doi:10.1088/0370-1328/85/4/301 [31] Westwater, J.: On Edwards’ model for polymer chains. Commun. Math. Phys.72, 131-174 (1980) · Zbl 0431.60100 · doi:10.1007/BF01197632 [32] Westwater, J.: On Edwards’ model for polymer chains. II. The self-consistent case. Commun. Math. Phys.79, 53-73 (1981) · Zbl 0477.60100 · doi:10.1007/BF01208286 [33] Westwater, J.: On Edwards’ model for polymer chains. III. Borel summability. Commun. Math. Phys.84, 459-470 (1982) · Zbl 0498.60095 · doi:10.1007/BF01209628 [34] Westwater, J.: On Edwards’ model for polymer chains. In: Bielefeld Encounters in Mathematics and Physics IV. Albeverio, S., Blanchard, Ph. (eds.). Singapore: World Scientific Publishing 1984 · Zbl 0583.60066 [35] Benhamou, M., Mahoux, G.: Multiplicative renormalization of continuous polymer theories, in good and ? solvents, up to critical dimensions. J. Phys.47, 559 (1986) [36] Duplantier, B.: Dimensional renormalizations of polymer theory. J. Phys.47, 569 (1986) [37] Duplantier, B.: Integral representation of the dimensionally renormalized polymer partition functions. Europhys. Lett.1, 99 (1986) · doi:10.1209/0295-5075/1/3/002 [38] Wolpert, R.: Wiener path intersections and local time. J. Funct. Anal.30, 329 (1978) · Zbl 0403.60069 · doi:10.1016/0022-1236(78)90061-7 [39] Geman, D., Horowitz, J., Rosen, J.: A local time analysis of intersections of Brownian paths in the plane. Ann. Probab.12, 86 (1984) · Zbl 0536.60046 · doi:10.1214/aop/1176993375 [40] For a discussion in field theory see, e.g., Bergère, M., David, F.: Integral representation for the dimensionally regularized massive Feynman amplitude. J. Math. Phys.20, 1244 (1979) · doi:10.1063/1.524187 [41] Duplantier, B.: Lagrangian tricritical theory of polymer chain solutions near the ?-point. J. Phys.43, 991 (1982) [42] Duplantier, B.: Tricritical polymer chains in or below three dimensions, Europhys. Lett.1, 491 (1986) · doi:10.1209/0295-5075/1/10/002 [43] Duplantier, B.: Direct or dimensional renormalizations of the tricritical polymer theory. J. Phys.47, 745 (1986) [44] Duplantier, B.: Geometry of polymer chains near the theta-point and dimensional regularization. J. Chem. Phys.86, 4233 (1987) · doi:10.1063/1.451884 [45] The best procedure is to represent each ? function in (5.4) (5.5) as an imaginary contour integral \(\theta (x) = \mathop \smallint \limits_C e^{ax} \frac{{da}}{{2\pi ia}}\) , where \(C\) lies on the right-hand side of the origin in ?. This reconstructs a Schwinger-Feynmann ?-parameter representation of the field theory, where now two different masses occur. Then one can use standard treatments of such integrals, by adapting them to the more complicated case of multiple masses. For a treatment in the symmetric case, see Zinn-Justin, J. (1987, in preparation) [46] Cates, M.E., Witten, T.A.: Diffusion near absorbing fractals: Harmonic measure exponents for polymers. Phys. Rev. A35, 1809 (1987) [47] Duplantier, B.: Polymer network of fixed topology: Renormalization, exact critical exponent ? in two dimensions andd=4??. Phys. Rev. Lett.57, 941 (1986) · doi:10.1103/PhysRevLett.57.941 [48] Fisher, M.E.: Walks, walls, wetting and melting. J. Stat. Phys.34, 667 (1984) · Zbl 0589.60098 · doi:10.1007/BF01009436 [49] Huse, D.A., Fisher, M.E.: Commensurate melting, domain walls, and dislocations. Phys. Rev. B29, 239 (1984) [50] Duplantier, B.: Exact contact critical exponents of a self-avoiding polymer chain in two dimensions. Phys. Rev. B35, 5290 (1987) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.