zbMATH — the first resource for mathematics

Comment on article by Windle and Carvalho. (English) Zbl 1327.62134
Summary: This article discusses J. Windle and C.-M. Carvalho’s [ibid. 9, No. 4, 759-792 (2014; Zbl 1327.62170)] state-space model for observations and latent variables in the space of positive symmetric matrices. The present discussion focuses on the model specification and on the contribution to the positive-value time series literature. I apply the proposed model to financial data with a view to shedding light on some modeling issues.

62F15 Bayesian inference
15B48 Positive matrices and their generalizations; cones of matrices
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
Full Text: DOI Euclid
[1] Carvalho, C. M. and West, M. (2007). “Dynamic Matrix-Variate Graphical Models.” Bayesian Analysis , 2: 69-98. · Zbl 1331.62040 · doi:10.1214/07-BA204 · euclid:ba/1340390064
[2] Clark, T. E. (2011). “Real-time density forecasts from Bayesian vector autoregressions with stochastic volatility.” Journal of Business & Economic Statistics , 29(3): 327-341. · Zbl 1219.91106 · doi:10.1198/jbes.2010.09248
[3] Fawcett, N., Kapetanios, G., Mitchell, J., and Price, S. (2014). “Generalised density forecast combinations.” Technical report, Bank of England Working Paper 492, Bank of England. · Zbl 1337.62292 · doi:10.1016/j.jeconom.2015.02.047
[4] Fox, E. B. and West, M. (2011). “Autoregressive models for variance matrices: stationary inverse Wishart processes.” Technical report, · arxiv.org
[5] Geweke, J. and Amisano, G. (2010). “Comparing and evaluating Bayesian predictive distributions of asset returns.” International Journal of Forecasting , 26: 216-230.
[6] - (2011). “Optimal prediction pools.” Journal of Econometrics , 164: 130-141. · Zbl 1441.62700 · doi:10.1016/j.jeconom.2011.02.017
[7] Grunwald, G. K., Guttorp, P., and Raftery, A. E. (1993). “Prediction rules for exponential family state space models.” Journal of the Royal Statistical Society, Series B , 55: 937-943. · Zbl 0782.62088
[8] Grunwald, G. K., Hamza, K., and Hyndman, R. J. (1997). “Some properties and generalizations of non-negative Bayesian time series models.” Journal of the Royal Statistical Society, Series B , 55: 937-943. · Zbl 1090.62556
[9] Hyndman, R. J., Koehler, A. B., Ord, J., and Snyder, R. D. (2008). Forecasting with exponential smoothing: the state space approach . Springer-Verlag, Berlin. · Zbl 1211.62165
[10] Patton, A. J. and Timmermann, A. (2011). “Forecast Rationality Tests Based on Multi-Horizon Bounds.” Journal of Business & Economic Statistics , 30(1): 1-17.
[11] Prado, R. and West, M. (2010). Time Series: Modeling, Computation, and Inference , chapter Multivariate DLMs and Covariance Models, 263-319. Chapman & Hall/CRC.
[12] Quintana, J. M. (1985). “A dynamic linear matrix-variate regression model.” Technical report, Research Report 83, Department of Statistics, University of Warwick.
[13] Quintana, J. M., Chopra, V. K., and Putnam, B. H. (1995). “Global asset allocation: Stretching returns by shrinking forecasts.” In Proceedings of the ASA Section on Bayesian Statistical Science, 1995 Joint Statistical Meetings, American Statistical Association. .
[14] Quintana, J. M. and West, M. (1987). “Multivariate time series analysis: new techniques applied to international exchange rate data.” The Statistician , 36: 275-281.
[15] Smith, R. L. and Miller, J. E. (1986). “A non-Gaussian state space model and application to prediction of records.” Journal of the Royal Statistical Society, Series B , 48(79-88). · Zbl 0593.62099
[16] Soyer, R. and Tanyeri, K. (2006). “Bayesian portfolio selection with multi-variate random variance models.” European Journal of Operational Research , 171: 977-90. · Zbl 1116.91049 · doi:10.1016/j.ejor.2005.01.012
[17] Triantafyllopoulos, K. (2012). “Multi-variate stochastic volatility modelling using Wishart autoregressive processes.” Journal of Time Series Analysis , 33: 48-60. · Zbl 1300.62083 · doi:10.1111/j.1467-9892.2011.00738.x
[18] Uhlig, H. (1997). “Bayesian vector autoregressions with stochastic volatility.” Econometrica , 65(1): 59-73. · Zbl 0870.62092 · doi:10.2307/2171813
[19] Wang, H. and West, M. (2009). “Bayesian analysis of matrix normal graphical models.” Biometrika , 96(4): 821-834. · Zbl 1179.62042 · doi:10.1093/biomet/asp049
[20] West, M. and Harrison., J. (1997). Bayesian Forecasting and Dynamic Models . Springer Verlag. · Zbl 0871.62026 · doi:10.1007/b98971
[21] Windle, J. and Carvalho, C. (2014). “A tractable state-space model for symmetric positive-definite matrices.” Bayesian Analysis , forthcoming. · Zbl 1327.62170 · doi:10.1214/14-BA888 · euclid:ba/1416579176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.