×

zbMATH — the first resource for mathematics

An OpenCL implementation of a forward sampling algorithm for CP-logic. (English) Zbl 1344.68045
Summary: We present an approximate query answering algorithm for the Probabilistic Logic Programming language CP-logic. It complements existing sampling algorithms by using the rules from body to head instead of in the other direction. We present an implementation in OpenCL, which is able to exploit the multicore architecture of modern GPUs to compute a large number of samples in parallel, and demonstrate that this is competitive with existing inference algorithms.
MSC:
68N17 Logic programming
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbas-Turki, L. A.; Vialle, S.; Lapeyre, B.; Mercier, P., Pricing derivatives on graphics processing units using Monte Carlo simulation, Concurr. Comput.: Pract. Exp., 26, 9, 1679-1697, (2014)
[2] Baral, C.; Gelfond, M.; Rushton, N., Probabilistic reasoning with answer sets, Theory Pract. Log. Program., (2008)
[3] De Raedt, L.; Kimmig, A.; Toivonen, H., Problog: a probabilistic prolog and its application in link discovery, (Proc. IJCAI, (2007))
[4] Fierens, D.; Van den Broeck, G.; Thon, I.; Gutmann, B.; De Raedt, L., Inference in probabilistic logic programs using weighted Cnf’s, (Proc. UAI, (2011))
[5] Karp, R.; Luby, M., Monte-Carlo algorithms for the planar multiterminal network reliability problem, J. Complex., 1, 1, 45-64, (1985) · Zbl 0596.90033
[6] Karp, R.; Luby, M.; Madras, N., Monte-Carlo approximation algorithms for enumeration problems, J. Algorithms, 10, 3, 429-448, (1989) · Zbl 0678.65001
[7] Kimmig, A.; Demoen, B.; De Raedt, L.; Santos Costa, V.; Rocha, R., On the implementation of the probabilistic logic programming language problog, Theory Pract. Log. Program., 11, 235-262, (2011) · Zbl 1220.68037
[8] Lee, A.; Yau, C.; Giles, M. B.; Doucet, A.; Holmes, C. C., On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods, J. Comput. Graph. Stat., (2010)
[9] Meert, W.; Struyf, J.; Blockeel, H., Learning ground CP-logic theories by leveraging Bayesian network learning techniques, Fundam. Inform., 89, 1, (2008) · Zbl 1155.68493
[10] Meert, W.; Struyf, J.; Blockeel, H., CP-logic theory inference with contextual variable elimination and comparison to BDD based inference methods, (Proc. ILP, (2009)) · Zbl 1286.68421
[11] Meredith, J. S.; Alvarez, G.; Maier, T. A.; Schulthess, T. C.; Vetter, J. S., Accuracy and performance of graphics processors: a quantum Monte Carlo application case study, Parallel Comput., 35, 3, 151-163, (2009)
[12] Pearl, J., Probabilistic reasoning in intelligent systems: networks of plausible inference, (1988), Morgan Kaufmann Publishers Inc.
[13] Poole, D., Abducing through negation as failure: stable models within the independent choice logic, J. Log. Program., 44, (2000) · Zbl 0957.68013
[14] Renkens, J.; Van den Broeck, G.; Nijssen, S., K-optimal: a novel approximate inference algorithm for problog, (Proc. ILP, (2011)) · Zbl 1260.68067
[15] Riguzzi, F., MCINTYRE: a Monte Carlo system for probabilistic logic programming, Fundam. Inform., 124, 4, 521-541, (2013)
[16] Riguzzi, F.; Swift, T., Well-definedness and efficient inference for probabilistic logic programming under the distribution semantics, Theory Pract. Log. Program., 13, 279-302, (2013) · Zbl 1267.68084
[17] Riguzzi, F., SLGAD resolution for inference on logic programs with annotated disjunctions, Fundam. Inform., 102, 3-4, 429-466, (2010) · Zbl 1220.68040
[18] Riguzzi, F.; Swift, T., The PITA system: tabling and answer subsumption for reasoning under uncertainty, Theory Pract. Log. Program., 11, 4-5, 433-449, (2011) · Zbl 1218.68169
[19] Sato, T.; Kameya, Y., PRISM: a language for symbolic-statistical modeling, (Proceedings of IJCAI, (1997)) · Zbl 0994.68025
[20] Shafer, G., The art of causal conjecture, (1996), MIT Press · Zbl 0874.60003
[21] Shterionov, D.; Kimmig, A.; Mantadelis, T.; Janssens, G., DNF sampling for problog inference, (Proceedings International Colloquium on Implementation of Constraint and LOgic Programming Systems (CICLOPS), (2010))
[22] Van Antwerpen, D., Improving SIMD efficiency for parallel Monte Carlo light transport on the GPU, (High Performance Graphics, (2011)), 41-50
[23] Van Gelder, A.; Ross, K.; Schlipf, J., The well-founded semantics for general logic programs, J. ACM, 38, 3, 620-650, (1991) · Zbl 0799.68045
[24] Vennekens, J., Negation in the head of CP-logic rules, (Proc. ASPOCP, (2013))
[25] Vennekens, J.; Denecker, M.; Bruynooghe, M., CP-logic: a language of causal probabilistic events and its relation to logic programming, Theory Pract. Log. Program., 9, 3, (2009) · Zbl 1179.68025
[26] Zhou, Y.; Liepe, J.; Sheng, X.; Stumpf, M. P.; Barnes, C., GPU accelerated biochemical network simulation, Bioinformatics, 27, 6, 874-876, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.