×

zbMATH — the first resource for mathematics

Global organization of phase space in the transition to chaos in the Lorenz system. (English) Zbl 1332.34083

MSC:
34C45 Invariant manifolds for ordinary differential equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems, general theory
34C28 Complex behavior and chaotic systems of ordinary differential equations
34D45 Attractors of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
65P99 Numerical problems in dynamical systems
Software:
AUTO; AUTO-07P; COLSYS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abraham R H and Shaw C D 1985 Dynamics–the Geometry of Behavior, Part Three: Global Behavior (Santa Cruz: Aerial)
[2] Afraimovich V S, Bykov V V and Shil’nikov L P 1977 The origin and structure of the Lorenz attractor Sov. Phys.–Dokl.22 253–5 (Originally published in Akademiia Nauk SSSR Doklady234 336–9)
[3] Aguirre P, Doedel E J, Krauskopf B and Osinga H M 2011 Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields Discrete Continuous Dyn. Syst. A 29 1309–44 · Zbl 1216.34035 · doi:10.3934/dcds.2011.29.1309
[4] Aguirre P, Krauskopf B and Osinga H M 2013 Global invariant manifolds near homoclinic orbits to a real saddle: (non)orientability and flip bifurcation SIAM J. Appl. Dyn. Syst.12 1803–46 · Zbl 1284.34069 · doi:10.1137/130912542
[5] Aguirre P, Krauskopf B and Osinga H M 2014 Global invariant manifolds near a Shilnikov homoclinic bifurcation J. Comput. Dyn.1 1–38 · Zbl 1309.34077 · doi:10.3934/jcd.2014.1.1
[6] Ascher U M, Christiansen J and Russell R D 1981 Collocation software for boundary value ODEs ACM Trans. Math. Softw.7 209–22 · Zbl 0455.65067 · doi:10.1145/355945.355950
[7] Barrio R, Shilnikov A L and Shilnikov L P 2012 Kneadings, symbolic dynamics and painting Lorenz chaos Int. J. Bifurcation Chaos22 1230016 · Zbl 1258.37035 · doi:10.1142/S0218127412300169
[8] Beyn W-J 1990 The numerical computation of connecting orbits in dynamical systems IMA J. Numer. Anal.10 379–405 · Zbl 0706.65080 · doi:10.1093/imanum/10.3.379
[9] Beyn W-J 1990 Global bifurcations and Their numerical computation Continuation and Bifurcations: Numerical Techniques and Applications(Proc. NATO Advanced Research Workshop (Leuven, Belgium) Nato Science Series C vol 313) ed D Roose et al (Dordrecht: Kluwer) pp 169–81 · doi:10.1007/978-94-009-0659-4_11
[10] de Boor C and Swartz B 1973 Collocation at Gaussian points SIAM J. Numer. Anal.10 582–606 · Zbl 0232.65065 · doi:10.1137/0710052
[11] Bykov V V and Shil’nikov A L 1992 On the boundaries of the domain of existence of the Lorenz attractor Sel. Math. Sov.11 375–82
[12] Creaser J L, Krauskopf B and Osinga H M 2015 \(\alpha\)-flips and T-points in the Lorenz system Nonlinearity28 R39–65
[13] Creaser J L, Krauskopf B and Osinga H M 2015 Continuation set-up for finding the first and further foliation tangencies in the Lorenz system preprint, The University of Auckland · Zbl 1381.37097
[14] Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Osinga H M and Wechselberger M 2012 Mixed-mode oscillations with multiple time scales SIAM Rev.54 211–88 · Zbl 1250.34001 · doi:10.1137/100791233
[15] Doedel E J 1981 auto, a program for the automatic bifurcation analysis of autonomous systems Congr. Numer.30 265–384
[16] Doedel E J 2007 AUTO-07P: Continuation and bifurcation software for ordinary differential equations with major contributions from Champneys A R, Fairgrieve T F, Kuznetsov Yu A, Oldeman B E, Paffenroth R C, Sandstede B, Wang X J and Zhang C (http://cmvl.cs.concordia.ca/auto/)
[17] Doedel E J, Krauskopf B and Osinga H M 2006 Global bifurcations of the Lorenz manifold Nonlinearity19 2947–72 · Zbl 1118.34042
[18] Doedel E J, Krauskopf B and Osinga H M 2011 Global invariant manifolds in the transition to preturbulence in the Lorenz system Indag. Math.22 222–40 · Zbl 1246.37037 · doi:10.1016/j.indag.2011.10.007
[19] Gleick J 1988 Chaos: Making a New Science (London: Heinemann) · Zbl 0706.58002
[20] Glendinning P and Sparrow C 1984 Local and global behavior near homoclinic orbits J. Stat. Phys.35 645–96 · Zbl 0588.58041 · doi:10.1007/BF01010828
[21] Grebogi C, Ott E and Yorke J A 1984 Crises, sudden changes in chaotic attractors, and transient chaos Physica D 7 181–200 · Zbl 0561.58029 · doi:10.1016/0167-2789(83)90126-4
[22] Guckenheimer J 1976 A strange, strange attractor The Hopf Bifurcation and its Applications ed J E Marsden and M McCracken (New York: Springer) pp 368–81 · doi:10.1007/978-1-4612-6374-6_25
[23] Guckenheimer J and Holmes P 1986 Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields 2nd printing (New York: Springer)
[24] Guckenheimer J and Williams R 1979 Structural stability of Lorenz attractors Publ. Math. IHES50 59–72 · Zbl 0436.58018 · doi:10.1007/BF02684769
[25] Jackson E A 1985 The Lorenz system: I. The global structure of its stable manifolds Phys. Scr.32 469–75 · Zbl 1063.37513
[26] Jackson E A 1985 The Lorenz system: II. The homoclinic convolution of the stable manifolds Phys. Scr.32 476–81 · Zbl 1063.37512
[27] Kaplan J L and Yorke J A 1979 Preturbulence, a regime observed in a fluid flow model of Lorenz Commun. Math. Phys.67 93–108 · Zbl 0443.76059 · doi:10.1007/BF01221359
[28] Kennedy J A 1993 How indecomposable continua arise in dynamical systems Papers on General Topology and Applications: Seventh Summer Conf. at the University of Wisconsin pp 180–201
[29] Kennedy J A 1995 A brief history of indecomposable continua Modern Methods in Continuum Theory(Lecture Notes in Pure and Applied Mathematics vol 179) ed H Cook et al (New York: Dekker) pp 103–26
[30] Kennedy J A and Yorke J A 1995 Bizarre topology is natural in dynamical systems Bull. Am. Math. Soc.32 309–16 · Zbl 0868.58055 · doi:10.1090/S0273-0979-1995-00599-9
[31] Krauskopf B and Osinga H M 1999 Two-dimensional global manifolds of vector fields Chaos9 768–74 · Zbl 0983.37110 · doi:10.1063/1.166450
[32] Krauskopf B and Osinga H M 2003 Computing geodesic level sets on global (un)stable manifolds of vector fields SIAM J. Appl. Dyn. Sys.4 546–69 · Zbl 1089.37014 · doi:10.1137/030600180
[33] Krauskopf B and Osinga H M 2007 Computing invariant manifolds via the continuation of orbit segments Numerical Continuation Methods for Dynamical Systems(Understanding Complex Systems) ed B Krauskopf (New York: Springer) pp 117–54 · Zbl 1126.65111 · doi:10.1007/978-1-4020-6356-5_4
[34] Krauskopf B, Osinga H M, Doedel E J, Henderson M E, Guckenheimer J, Vladimirsky A, Dellnitz M and Junge O 2005 A survey of methods for computing (un)stable manifolds of vector fields Int. J. Bifurcation Chaos15 763–91 · Zbl 1086.34002 · doi:10.1142/S0218127405012533
[35] Lee C M, Collins P J, Krauskopf B and Osinga H M 2008 Tangency bifurcations of global Poincaré maps SIAM J. Appl. Dyn. Syst.7 712–54 · Zbl 1159.37313 · doi:10.1137/07069972X
[36] Lorenz E N 1963 Deterministic nonperiodic flows J. Atmos. Sci.20 130–41 · doi:10.1175/1520-0469(1963)020\ · doi:\ · doi:<\ · doi:\ · doi:0130:DNF\ · doi:\ · doi:>\ · doi:\ · doi:2.0.CO;2
[37] Nowacki J, Mazlan S H, Osinga H M and Tsaneva-Atanasova K T 2010 The role of large-conductance calcium-activated K+ (BK) channels in shaping bursting oscillations of a somatotroph cell model Physica D 239 485–93 · Zbl 1186.92014 · doi:10.1016/j.physd.2009.11.014
[38] Osinga H M and Krauskopf B 2002 Visualizing the structure of chaos in the Lorenz system Comput. Graph.26 815–23 · doi:10.1016/S0097-8493(02)00136-X
[39] Osinga H M and Tsaneva-Atanasova K T 2013 Geometric analysis of transient bursts Chaos23 046107 · Zbl 06550562 · doi:10.1063/1.4826655
[40] Perelló C 1979 Intertwining invariant manifolds and Lorenz attractor Proc. Int. Conf.(Northwestern Univ., Evanston, Ill., 1979)Global theory of dynamical systems (Berlin: Springer) pp 375–8
[41] Robbins K 1979 Periodic solutions and bifurcation structure at high r in the Lorenz model at SIAM J. Appl. Math.36 457–72 · Zbl 0407.76077 · doi:10.1137/0136035
[42] Ruelle D and Takens F 1971 On the nature of turbulence Commun. Math. Phys.20 167–92 · Zbl 0223.76041 · doi:10.1007/BF01646553
[43] Sanjuán M A F, Kennedy J A, Ott E and Yorke J A 1997 Indecomposable continua and the characterization of strange sets in nonlinear dynamics Phys. Rev. Lett.78 1892–5 · doi:10.1103/PhysRevLett.78.1892
[44] Simó C 2003 personal communication at Equadiff (Hasselt, Belgium, 2003) (Singapore: World Scientific)
[45] Sparrow C 1982 The Lorenz Equations: Bifurcations, Chaos and Strange Attractors(Applied Mathematical Science vol 41) (New York: Springer) · doi:10.1007/978-1-4612-5767-7
[46] Tucker W 1999 The Lorenz attractor exists C. R. Acad. Sci., Paris I 328 1197–202 · Zbl 0935.34050 · doi:10.1016/S0764-4442(99)80439-X
[47] Viana M 2000 What’s new on Lorenz strange attractors? Math. Intelligencer22 6–19 · Zbl 1052.37026 · doi:10.1007/BF03025276
[48] Williams R F 1979 The structure of Lorenz attractors Publ. Math. IHES50 101–52 · Zbl 0484.58021 · doi:10.1007/BF02684770
[49] Yorke J A and Yorke E D 1979 Metastable chaos: the transition to sustained chaotic behavior in the Lorenz model J. Stat. Phys.21 263–77 · doi:10.1007/BF01011469
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.