Performance comparison of numerical inversion methods for Laplace and Hankel integral transforms in engineering problems. (English) Zbl 1328.65069

Summary: Different methods for the numerical evaluations of the inverse Laplace and inverse of joint Laplace-Hankel integral transforms are applied to solve a wide range of initial-boundary value problems often arising in engineering and applied mathematics. The aim of the paper is to present a performance comparison among different numerical methods when they are applied to transformed functions related to actual engineering problems found in the literature. Most of our selected test functions have been found in the solution of boundary value problems of applied mechanics such as those related to transient responses of isotropic and transversely isotropic half-space to concentrated impulse or those related to viscoelastic wave motion in layered media. These classes of test functions are frequently encountered in similar problems such as those in boundary element or boundary integral equations, theoretical seismology, soil-structure-interaction in time domain and so on. Therefore, their behavior with different numerical inversion algorithms could make a useful guide to a precise choice of more suitable inversion method to be used in similar problems. Some different methods are also investigated in detail and compared for the inversion of the joint Hankel-Laplace transforms, where more sophisticated integrand functions are encountered. It is shown that Durbin, Crump, D’Amore, Fixed-Talbot, Gaver-Whyn-Rho (GWR), and Direct Integration methods have excellent performance and produce good results when applied to the same problems. On the contrary, Gaver-Stehfest and Piessens methods furnish results not very reliable for almost all classes of transformed functions and they seem good only for “simple” transformed functions. Particularly the performance of GWR algorithm is very good even for transformed functions with infinite number of singularities, where the other methods fail. In addition, in case of double integral transforms, only the Fixed-Talbot, Durbin and Weeks methods are recommended.


65D30 Numerical integration
44A10 Laplace transform
65R10 Numerical methods for integral transforms
Full Text: DOI


[1] Abate, J.; Valko, P. P., Multi-precision Laplace transform inversion, Int. J. Numer. Methods Eng., 60, 979-993, (2004) · Zbl 1059.65118
[2] M. Abramowitz, A. Stegun, Handbook of mathematical functions with tables, National Bureau of Standards, Applied Mathematics Series - 55 Washington DC, 1970. · Zbl 0171.38503
[3] Achenbach, J. D., Wave propagation in elastic solids, (1973), North Holland Publishing Company Amsterdam London · Zbl 0268.73005
[4] V. Adámek, F. Vales, J. Cerv, Comparison of two possible approaches to inverse, laplace transform applied to wave problem, in: J. Eng. Mech., 18th International Conference, 2012, pp. 25-32.
[5] Barone, P.; Ramponi, A.; Sebastiani, G., On the numerical inversion of the Laplace transform for nuclear magnetic resonance relaxometry, Inverse Prob., 17, 77-94, (2001) · Zbl 0995.65140
[6] Bellman, B., Numerical inversion of the Laplace transform: Laplace transform applications to biology, economics engineering, and physics, (1956), American Elsevier Publishing Company, Inc New York
[7] Cohen, A. M., Numerical methods for Laplace transform inversion, (2007), Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA · Zbl 1127.65094
[8] Crump, K. S., Numerical inversion of Laplace transforms using a Fourier series approximation, J. Assoc. Comp. Mach., 23, 1, 89-96, (1976) · Zbl 0315.65074
[9] D’Amore, L.; Campagna, R.; Galletti, A.; Marcellino, L.; Murli, A., A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis, Inverse Prob., 28, 025007, (2012) · Zbl 1257.65074
[10] L. D’Amore, R. Campagna, V. Mele, A. Murli, ReLaTIve. An ansi C90 software package for the real laplace transform inversion, in: Numerical Algorithms, vol. 63, No. 1, 2013, pp. 187-211, doi: http://dx.doi.org/10.1007/s11075-012-9636-0. · Zbl 1267.65202
[11] D’Amore, L.; Laccetti, G.; Murli, A., An implementation of a Fourier series method for the numerical inversion of the Laplace transform, ACM Trans. Math. Softw., 19, 279-305, (1999) · Zbl 0962.65109
[12] Davis, B., Integral transform and their application, (2000), Springer-Verlag New York, Berlin Heidelberg
[13] Davis, B.; Martin, B., Numerical inversion of the Laplace transform: a survey and comparison of methods, J. Comput. Phys., 33, 1, 1-32, (1979) · Zbl 0416.65077
[14] Davis, P. J.; Rabinowitz, P., Methods of numerical integration, (1984), Academic Press, Inc. 1250, Six Avenue, San Diego, California
[15] Dubner, R.; Abate, J., Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform, J. ACM, 15, 115-123, (1968) · Zbl 0165.51403
[16] Duffy, D. G., On the numerical inversion of Laplace transform, comparison of three new methods on characteristic problems from applications, ACM Trans. Math. Softw., 19, 3, 333-359, (1993) · Zbl 0892.65079
[17] Duffy, D. G., Transform methods for solving partial differential equations, (2004), Chapman & Hill, A CRC Press Company Boca Raton, London, New York, Washington, DC · Zbl 1073.35001
[18] Durbin, F., Numerical inversion of Laplace transforms: efficient improvement to dubner and abate’s method, J. Comput., 17, 4, 371-376, (1974) · Zbl 0288.65072
[19] Erdelyi, A., Table of integral transform, vol. 1, 2, (1954), McGraw-Hill Inc US
[20] Eskandari Ghadi, M.; Sattar, S., Axisymmetric transient waves in transversely isotropic half-space, J. Soil Dyn. Earthquake Eng., 29, 347-355, (2009)
[21] Eskandari-Ghadi, M.; Pak, R. Y.S.; Ardeshir, A., Transversely isotropic elastodynamic solution of a finite layer on an infinite subgrade under surface loads, J. Soil Dyn. Earthquake Eng., 28, 12, 986-1003, (2008)
[22] Garbow, B. S.; Giunta, G.; Lyness, J. N.; Murli, A., Software for an implementation of weeks’ method for the inverse Laplace transform, ACM Trans. Math. Softw., 14, 163-170, (1988) · Zbl 0642.65086
[23] Gaver, D. P., Observing of stochastic processes and approximate transform inversion, Oper. Res., 14, 3, 444-459, (1966)
[24] Georgiadis, H. G.; Vamvatsikos, D.; Vardoulakis, I., Numerical implementation of the integral-transform solution to lamb’s point-load problem, J. Comput. Mech., 24, 90-99, (1990) · Zbl 0981.74079
[25] Giunta, G.; Lacetti, G.; Rizzardi, M. R., More on the weeks method for the numerical inversion of the Laplace transform, H. Numer. Math., 54, 193-200, (1988) · Zbl 0659.65138
[26] Hayaty, Y.; Eskandari-Ghadi, M.; Raoofian Naeeni, M.; Rahimian, M.; Ardalan, A. A., Dynamic green’s functions of an axisymmetric thermoelastic half-space by a method of potentials, J. Eng. Mech., (2012)
[27] Hayaty, Y.; Eskandari-Ghadi, M.; Raoofian Naeeni, M.; Rahimian, M.; Ardalan, A. A., Frequency domain analysis of an axisymmetric thermoelastic transversely isotropic half-space, J. Eng. Mech., (2012)
[28] Honig, G.; Hirdes, U., A method for the numerical inversion of Laplace transforms, J. Comput. Appl. Math., 10, 113-132, (1984) · Zbl 0535.65090
[29] Khojasteh, A.; Rahimian, M.; Pak, R. Y.S.; Eskandari, M., Asymmetric dynamic green’s functions in a two-layered transversely isotropic half-space, J. Eng. Mech., 134, 9, 777-787, (2008)
[30] Kuhlman, K. L., Review of inverse Laplace transform algorithms for Laplace-space numerical approaches, J. Numer. Algorithms, (2012)
[31] Kuznetsov, M. M., Unsteady-state slip of a gas near an infinite plane with diffusion-mirror reflection of molecules, J. Appl. Mech. Tech. Phys., 16, 853-858, (1975)
[32] Lagoudas, D. C.; Hui, C. Y.; Phoenix, S. L., Time evolution of overstress profiles near broken fibers in a composite with a viscoelastic matrix, Int. J. Solids Struct., 25, 45-66, (1989) · Zbl 0671.73053
[33] Lamanna, R., On the inversion of multi-component NMR relaxation and diffusion decays in the heterogeneous systems, Concept. Magn. Reson., 26A, 78-90, (2005)
[34] Levin, D., Numerical inversion of the Laplace transform by accelerating the convergence of bromwich’s integral, J. Comput. Appl. Math., 1, 247-250, (1975) · Zbl 0315.65075
[35] Levin, D., Analysis of collocation method for integrating rapidly oscillatory functions, J. Comput. Appl. Math., 78, 131-138, (1977) · Zbl 0870.65019
[36] Levin, D., Fast integration of rapidly oscillatory function, J. Comput. Appl. Math., 67, 95-101, (1977) · Zbl 0858.65017
[37] Longman, I. M., Note on a method for computing infinite integrals of oscillatory functions, Proc. Cambridge Philos. Soc., 52, 4, 764-768, (1956) · Zbl 0072.33803
[38] Lyness, J. N.; Giunta, G. A., Modification of the weeks method for numerical inversion of the Laplace transform, Math. Comput., 47, 313-322, (1986) · Zbl 0611.65088
[39] A. Mallet, Numerical inversion of Laplace transform, 1985.
[40] Miles, J. W., Transient loading of a baffled piston, J. Acoust. Soc. Am., 25, 200-203, (1953)
[41] Montella, C.; Michel, R.; Diard, J. P., Numerical inversion of Laplace transforms. A useful tool for evaluation of chemical diffusion coefficients in ion-insertion electrodes investigated by PITT, J. Electroanal. Chem., 608, 1, 37-46, (2007)
[42] Murli, A.; Rizzardi, M., Talbot’s method for the Laplace inversion problem, ACM Trans. Math. Softw., 16, 2, 158-168, (1990) · Zbl 0900.65374
[43] Narayanan, G. V.; Beskos, D. E., Numerical operational methods for time-dependent linear problems, Int. J. Numer. Methods Eng., 18, 1829-1854, (1982) · Zbl 0493.65070
[44] Pekeris, C. L., The seismic surface pulse, Proc. Natl. Acad. Sci. USA., 41, 629-639, (1956) · Zbl 0068.41204
[45] Piessens, R., Gaussian quadrature formulas for the numerical integration of bromwich’s integral and the inversion of the Laplace transform, J. Eng. Math., 5, 1, 1-9, (1969) · Zbl 0263.65032
[46] Piessens, R., Gaussian quadrature formulas for bromwich’s integral, ACM Trans. Math. Softw., 16, 486-487, (1973)
[47] Piessens, R.; Huysmans, R., Algorithm 619, automatic numerical inversion of the Laplace transform, ACM Trans. Math. Softw., 10, 348-353, (1984) · Zbl 0546.65087
[48] Rajapakse, R. K.N. D.; Wang, Y., Green’s functions for transversely isotropic elastic half space, J. Eng. Mech., 119, 9, 1724-1746, (1993)
[49] M. Raoofian-Naeeni, M. Eskandari-Ghadi, A.A. Ardalan, R.Y.S. Pak, M. Rahimian, Y. Hayati, Coupled thermoviscoelastodynamic Green’s functions for bi-material half space, 2012 (Accepted for publication in the ZAMM-Journal of applied mathematics and mechanics after minor revision). · Zbl 1322.74013
[50] M. Raoofian-Naeeni, M. Eskandari-Ghadi, A.A. Ardalan, M. Rahimian, Y. Hayati, Analytical solution of coupled thermoelastic axisymmetric transient waves in a transversely isotropic half-space, 2012, http://dx.doi.org/10.1115/1.4007786. · Zbl 1322.74013
[51] Sidi, A., The numerical evaluation of very oscillatory infinite integrals by extrapolation, Math. Comput., 38, 158, 517-529, (1982) · Zbl 0508.65011
[52] Sidi, A., Practical extrapolation methods: theory and applications, (2003), Cambridge University Press Cambridge · Zbl 1041.65001
[53] Sneddon, I. N., The use of integral transforms, (1972), McGraw-Hill New York · Zbl 0237.44001
[54] Stehfest, H., Algorithm 368, numerical inversion of Laplace transform, Commun. ACM, 13, 1, 47-49, (1970)
[55] Talbot, A., The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl., 23, 1, 97-120, (1979) · Zbl 0406.65054
[56] Ting, T., The effects of dispersion and dissipation on wave propagation in viscoelastic layered composites, Int. J. Solids Struct., 903-911, (1980) · Zbl 0449.73033
[57] Vedavarz, A.; Mitra, K.; Kumar, S., Hyperbolic temperature profiles for laser surface interactions, J. Appl. Phys., 76, 5014-5021, (1994)
[58] Vilinger, H., Solving cylindrical geothermal problems using the gaver-Stehfest inverse Laplace transform, Geophysics, 50, 10, 1581-1587, (1985)
[59] Watanabe, K., Transient response of an inhomogeneous elastic half space to a torsional load, Bull. JSME, 24, 1537-1542, (1981)
[60] Weeks, W. T., Numerical inversion of Laplace transforms using Laguerre functions, J. ACM, 13, 419-426, (1966) · Zbl 0141.33401
[61] Weideman, J. A.C., Algorithms for parameter selection in the weeks method for inverting the Laplace transform, SIAM J. Sci. Comput., 21, 111-128, (1999) · Zbl 0944.65137
[62] Weideman, J. A.C.; Trefethen, L. N., Parabolic and hyperbolic contours for computing the bromwich integral, Math. Comput., 76, 1341-1356, (2007) · Zbl 1113.65119
[63] Widnall, S. E.; Dowell, E. H., Aerodynamic forces on an oscillating cylindrical duct with an internal flow, J. Sound. Vib., 6, 71-85, (1967)
[64] Zhan, X., Parallel Fortran-MPI software for numerical inversion of the Laplace transform and its application to oscillatory water levels in groundwater environments, Environ. Modell. Softw., 20, 279-284, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.