×

Probabilistic wind speed forecasting on a grid based on ensemble model output statistics. (English) Zbl 1454.62458

Summary: Probabilistic forecasts of wind speed are important for a wide range of applications, ranging from operational decision making in connection with wind power generation to storm warnings, ship routing and aviation. We present a statistical method that provides locally calibrated, probabilistic wind speed forecasts at any desired place within the forecast domain based on the output of a numerical weather prediction (NWP) model. Three approaches for wind speed post-processing are proposed, which use either truncated normal, gamma or truncated logistic distributions to make probabilistic predictions about future observations conditional on the forecasts of an ensemble prediction system (EPS). In order to provide probabilistic forecasts on a grid, predictive distributions that were calibrated with local wind speed observations need to be interpolated. We study several interpolation schemes that combine geostatistical methods with local information on annual mean wind speeds, and evaluate the proposed methodology with surface wind speed forecasts over Germany from the COSMO-DE (Consortium for Small-scale Modelling) ensemble prediction system.

MSC:

62P12 Applications of statistics to environmental and related topics
62M20 Inference from stochastic processes and prediction
86A32 Geostatistics

Software:

LBFGS-B
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M. and Reinhardt, T. (2011). Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Monthly Weather Review 139 3887-3905.
[2] Baran, S., Nemoda, D. and Horányi, A. (2013). Probabilistic wind speed forecasting in Hungary. Meteorologische Zeitschrift 22 273-282.
[3] Buizza, R., Houtekamer, P. L., Toth, Z., Pellerin, G., Wei, M. and Zhu, Y. (2005). A comparison of the ECMWF, MSC and NCEP global ensemble prediction systems. Monthly Weather Review 133 1076-1097.
[4] Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. Y. (1995). A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16 1190-1208. · Zbl 0836.65080 · doi:10.1137/0916069
[5] Chilès, J.-P. and Delfiner, P. (2012). Geostatistics : Modeling Spatial Uncertainty , 2nd ed. Wiley, Hoboken, NJ. · Zbl 1256.86007 · doi:10.1002/9781118136188
[6] China Internet Information Center (2011). Renewable energy law of the People’s Republic of China. Press release.
[7] Courtney, J. F., Lynch, P. and Sweeney, C. (2013). High resolution forecasting for wind energy applications using Bayesian model averaging. Tellus A 65 19669.
[8] Doms, G. and Schättler, U. (2002). A description of the nonhydrostatic regional model LM: Dynamics and numerics. Technical report, Deutscher Wetterdienst.
[9] Durst, C. S. (1960). Wind speeds over short period of time. The Meteorological Magazine 89 181-187.
[10] European Commission (2008). Climate change: Commission welcomes final adoption of Europe’s climate and energy package. Press release. Available at .
[11] European Wind Energy Association (2008). Pure power-wind energy scenarios up to 2030, final report. Press release. Available at .
[12] Friederichs, P. and Thorarinsdottir, T. L. (2012). Forecast verification for extreme value distributions with an application to probabilistic peak wind prediction. Environmetrics 23 579-594. · doi:10.1002/env.2176
[13] Gebhardt, C., Theis, S. E., Paulat, M. and Ben Bouallègue, Z. (2011). Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variations of lateral boundaries. Atmospheric Research 100 168-177.
[14] Gerth, W.-P. and Christoffer, J. (1994). Windkarten von Deutschland. Meteorologische Zeitschrift. Meteorologische Zeitschrift 3 67-77.
[15] Gneiting, T. (2008). Editorial: Probabilistic forecasting. J. Roy. Statist. Soc. Ser. A 171 319-321. · doi:10.1111/j.1467-985X.2007.00522.x
[16] Gneiting, T. (2011). Making and evaluating point forecasts. J. Amer. Statist. Assoc. 106 746-762. · Zbl 1232.62028 · doi:10.1198/jasa.2011.r10138
[17] Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B. Stat. Methodol. 69 243-268. · Zbl 1120.62074 · doi:10.1111/j.1467-9868.2007.00587.x
[18] Gneiting, T., Larson, K., Westrick, K., Genton, M. G. and Aldrich, E. (2006). Calibrated probabilistic forecasting at the stateline wind energy center: The regime-switching space-time method. J. Amer. Statist. Assoc. 101 968-979. · Zbl 1120.62341 · doi:10.1198/016214506000000456
[19] Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359-378. · Zbl 1284.62093 · doi:10.1198/016214506000001437
[20] Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review 133 1098-1118.
[21] Hamill, T. M. and Colucci, S. J. (1997). Verification of Eta-RSM short-range ensemble forecasts. Monthly Weather Review 125 1312-1327.
[22] Hersbach, H. (2000). Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting 15 559-570.
[23] Jeon, J. and Taylor, J. W. (2012). Using conditional kernel density estimation for wind power density forecasting. J. Amer. Statist. Assoc. 107 66-79. · Zbl 1261.62031 · doi:10.1080/01621459.2011.643745
[24] Keller, J. and Hense, A. (2011). A new non-Gaussian evaluation method for ensemble forecasts based on analysis rank histograms. Meteorologische Zeitschrift 20 107-117.
[25] Kleiber, W., Raftery, A. E., Baars, J., Gneiting, T., Mass, C. and Grimit, E. P. (2011). Locally calibrated probabilistic temperature foreasting using geostatistical model averaging and local Bayesian model averaging. Monthly Weather Review 139 2630-2649.
[26] Lerch, S. and Thorarinsdottir, T. L. (2013). Comparison of nonhomogeneous regression models for probabilistic wind speed forecasting. Tellus A 65 21206.
[27] McDonald, J. B. and Jensen, B. C. (1979). An analysis of some properties of alternative measures of income inequality based on the gamma distribution function. J. Amer. Statist. Assoc. 74 856-860. · Zbl 0429.62080 · doi:10.2307/2286411
[28] Messner, J. W., Mayr, G. J., Wilks, D. S. and Zeileis, A. (2014a). Extending extended logistic regression: Extended versus separate versus ordered versus censored. Monthly Weather Review 142 3003-3014.
[29] Messner, J. W., Mayr, G. J., Zeileis, A. and Wilks, D. S. (2014b). Heteroscedastic extended logistic regression for postprocessing of ensemble guidance. Monthly Weather Review 142 448-456.
[30] National Research Council (2006). Completing the forecast: Characterizing and communicating uncertainty for better decisions using weather and climate forecasts. National Academies Press, Washington, DC.
[31] Palmer, T. N. (2002). The economic value of ensemble forecasts as a tool for risk assessment: From days to decades. Quarterly Journal of the Royal Meteorological Society 128 747-774.
[32] Pinson, P. (2013). Wind energy: Forecasting challenges for its operational management. Statist. Sci. 28 564-585. · Zbl 1331.91140 · doi:10.1214/13-STS445
[33] Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133 1155-1174.
[34] Scheuerer, M. and Büermann, L. (2014). Spatially adaptive post-processing of ensemble forecasts for temperature. J. R. Stat. Soc. Ser. C. Appl. Stat. 63 405-422. · doi:10.1111/rssc.12040
[35] Scheuerer, M., Schaback, R. and Schlather, M. (2013). Interpolation of spatial data-A stochastic or a deterministic problem? European J. Appl. Math. 24 601-629. · Zbl 1426.62284 · doi:10.1017/S0956792513000016
[36] Sloughter, M., Gneiting, T. and Raftery, A. E. (2010). Probabilistic wind spread forecasting using ensembles and Bayesian model averaging. J. Amer. Statist. Assoc. 105 25-35. · doi:10.1198/jasa.2009.ap08615
[37] Thorarinsdottir, T. L. and Gneiting, T. (2010). Probabilistic forecasts of wind speed: Ensemble model ouput statistics by using heteroscedastic censored regression. J. Roy. Statist. Soc. Ser. A 173 371-388. · doi:10.1111/j.1467-985X.2009.00616.x
[38] Thorarinsdottir, T. L. and Johnson, M. S. (2012). Probabilistic wind gust forecasting using non-homogeneous Gaussian regression. Monthly Weather Review 140 889-897.
[39] Troen, I. and Petersen, E. L. (1989). European wind atlas. Technical report, Risø National Laboratory, Roskilde.
[40] U.S. Department of Energy (2008). 20
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.