Dagum, Estela Bee; Bianconcini, Silvia A new set of asymmetric filters for tracking the short-term trend in real-time. (English) Zbl 1454.62474 Ann. Appl. Stat. 9, No. 3, 1433-1458 (2015). Summary: For assessing in real time the short-term trend of major economic indicators, official statistical agencies generally rely on asymmetric filters that were developed by Musgrave in 1964. However, the use of the latter introduces revisions as new observations are added to the series and, from a policy-making viewpoint, they are too slow in detecting true turning points. In this paper, we use a reproducing kernel methodology to derive asymmetric filters that converge quickly and monotonically to the corresponding symmetric one. We show theoretically that proposed criteria for time-varying bandwidth selection produce real-time trend-cycle filters to be preferred to the Musgrave filters from the viewpoint of revisions and time delay to detect true turning points. We use a set of leading, coincident and lagging indicators of the US economy to illustrate the potential gains statistical agencies could have by also using our methods in their practice. Cited in 3 Documents MSC: 62P20 Applications of statistics to economics 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62M20 Inference from stochastic processes and prediction Keywords:recession and recovery analysis; reproducing kernels; seasonally adjusted data; Musgrave filters; time-varying bandwidth selection; US economy × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Azevedo, J. V. (2011). A multivariate band-pass filter for economic time series. J. R. Stat. Soc. Ser. C. Appl. Stat. 60 1-30. · doi:10.1111/j.1467-9876.2010.00734.x [2] Azevedo, J. V., Koopman, S. J. and Rua, A. (2006). Tracking the business cycle of the Euro area: A multivariate model-based bandpass filter. J. Bus. Econom. Statist. 81 575-593. [3] Berlinet, A. (1993). Hierarchies of higher order kernels. Probab. Theory Related Fields 94 489-504. · Zbl 0795.62032 · doi:10.1007/BF01192560 [4] Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics . Kluwer Academic, Boston, MA. · Zbl 1145.62002 [5] Bianconcini, S. and Quenneville, B. (2010). Real time analysis based on reproducing Kernel Henderson filters. Estud. Econ. Aplicada. 28 553-574. [6] Cholette, P. A. (1981). Time series analysis. In Proceedings of the Third International Conference ( ITSM ) Held in Houston , Tex. , August 14 - 15, 1980 (O. D. Anderson and M. R. Perryman, eds.). North-Holland, Amsterdam. [7] Christiano, L. and Fitzgerald, T. (2003). The band-pass filter. Internat. Econom. Rev. 44 435-465. [8] Dagum, E. B. (1982a). Revisions of time varying seasonal filters. J. Forecast. 1 173-187. [9] Dagum, E. B. (1982b). The effects of asymmetric filters on seasonal factor revisions. J. Amer. Statist. Assoc. 77 732-738. [10] Dagum, E. B. (1996). A new method to reduce unwanted ripples and revisions in trend-cycle estimates from X11ARIMA. Wiley Ser. Surv. Methodol. 22 77-83. [11] Dagum, E. B. and Bianconcini, S. (2008). The Henderson smoother in reproducing kernel Hilbert space. J. Bus. Econom. Statist. 26 536-545. [12] Dagum, E. B. and Bianconcini, S. (2013). A unified view of nonparametric trend-cycle predictors via reproducing kernel Hilbert spaces. Econometric Rev. 32 848-867. · doi:10.1080/07474938.2012.690674 [13] Dagum, E. B. and Bianconcini, S. (2015). Supplement to “A new set of asymmetric filters for tracking the short-term trend in real time.” . · Zbl 1454.62474 [14] Dagum, E. B. and Laniel, N. (1987). Revisions of trend-cycle estimators of moving average seasonal adjustment methods. J. Bus. Econom. Statist. 5 177-189. [15] Dagum, E. B. and Luati, A. (2009a). A note on the statistical properties of nonparametric trend estimators by means of smoothing matrices. J. Nonparametr. Stat. 21 193-205. · Zbl 1155.62065 · doi:10.1080/10485250802534986 [16] Dagum, E. B. and Luati, A. (2009b). A cascade linear filter to reduce revisions and false turning points for real time trend-cycle estimation. Econometric Rev. 28 40-59. · Zbl 1161.62062 · doi:10.1080/07474930802387837 [17] Dagum, E. B. and Luati, A. (2012). Asymmetric filters for trend-cycle estimation. In Economic Time Series 213-230. CRC Press, Boca Raton, FL. · Zbl 1260.91190 · doi:10.1201/b11823-14 [18] de Carvalho, M., Rodrigues, P. C. and Rua, A. (2012). Tracking the US business cycle with a singular spectrum analysis. Econom. Lett. 114 32-35. [19] de Carvalho, M. and Rua, A. (2014). Nowcasting the US business cycle: Singular spectrum analysis at work. Working paper 16, Banco de Portugal. [20] Doherty, M. (2001). The surrogate Henderson filters in \(X\)-\(11\). Aust. N. Z. J. Stat. 43 385-392. · Zbl 1009.62577 · doi:10.1111/1467-842X.00187 [21] Findley, D. F. and Martin, D. E. K. (2006). Frequency domain analyses of SEATS and X-11/12-ARIMA seasonal adjustment filters for short and moderate-length time series. J. Off. Stat. 22 1-34. [22] Gasser, T. and Müller, H.-G. (1979). Kernel estimation of regression functions. In Smoothing Techniques for Curve Estimation ( Proc. Workshop , Heidelberg , 1979). Lecture Notes in Math. 757 23-68. Springer, Berlin. · doi:10.1007/BFb0098489 [23] Gray, A. and Thomson, P. (1996). Design of moving-average trend filters using fidelity and smoothness criteria. In Athens Conference on Applied Probability and Time Series Analysis , Vol. II (1995) (P. M. Robinson and M. Rosenblatt, eds.). Lecture Notes in Statist. 115 205-219. Springer, New York. · doi:10.1007/978-1-4612-2412-9_15 [24] Gray, A. G. and Thomson, P. J. (2002). On a family of finite moving-average trend filters for the ends of series. J. Forecast. 21 125-149. [25] Henderson, R. (1916). Note on graduation by adjusted average. Trans. Amer. Math. Soc. 17 43-48. [26] Hodrick, R. J. and Prescott, E. C. (1997). Postwar US business cycles: An empirical investigation. J. Money Credit Bank. 29 1-16. [27] Kenny, P. and Durbin, J. (1982). Local trend estimation and seasonal adjustment of. Economic and Social Time Series. J. Roy. Stat. Soc. A Stat. 145 1-41. [28] Kyung-Joon, C. and Schucany, W. R. (1998). Nonparametric kernel regression estimation near endpoints. J. Statist. Plann. Inference 66 289-304. · Zbl 1260.91190 · doi:10.1016/S0378-3758(97)00082-7 [29] Ladiray, D. and Quenneville, B. (2001). Seasonal Adjustment with the X- 11 Method . Springer, New York. · Zbl 0961.62073 [30] Laniel, N. (1985). Design criteria for the 13-term Henderson end weights. Working paper, Methodogy Branch, Statistics Canada. Ottawa. [31] Loader, C. (1999). Local Regression and Likelihood . Springer, New York. · Zbl 0929.62046 · doi:10.1007/b98858 [32] Musgrave, J. (1964). A set of end weights to end all end weights. Working paper, US Census Bureau, Washington, DC. [33] Quenneville, B., Ladiray, D. and Lefrancois, B. (2003). A note on musgrave asymmetrical trend-cycle filters. J. Forecast. 19 727-734. [34] Shiskin, J., Young, A. and Musgrave, J. (1967). The X-11 Variant of the Census Method II Seasonal Adjustment Program. Technical paper 15. [35] Wildi, M. (2008). Real-Time Signal Extraction : Beyond Maximum Likelihood Principles . Springer, Berlin. [36] Zellner, A., Hong, C. and Min, C. (1991). Forecasting turning points in international output growth rates using Bayesian exponentially weighted autoregression, time-varying parameter, and pooling techniques. J. Econometrics 49 275-304. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.