zbMATH — the first resource for mathematics

Updating and downdating techniques for optimizing network communicability. (English) Zbl 1328.05174

05C82 Small world graphs, complex networks (graph-theoretic aspects)
05C40 Connectivity
15A16 Matrix exponential and similar functions of matrices
65F60 Numerical computation of matrix exponential and similar matrix functions
Full Text: DOI arXiv
[1] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, Implementation of a restarted Krylov subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429 (2008), pp. 2293–2314. · Zbl 1153.65042
[2] H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix, J. ACM, 58 (2011), Art. 8. · Zbl 1327.68331
[3] A.-L. Barabási, Linked: The New Science of Networks, Perseus, Cambridge, MA, 2002.
[4] A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), pp. 509–512. · Zbl 1226.05223
[5] M. Benzi and P. Boito, Quadrature rule-based bounds for functions of adjacency matrices, Linear Algebra Appl., 433 (2010), pp. 637–652. · Zbl 1191.65046
[6] M. Benzi and G. H. Golub, Bounds for the entries of matrix functions with application to preconditioning, BIT, 39 (1999), pp. 417–438. · Zbl 0934.65054
[7] M. Benzi and C. Klymko, Total communicability as a centrality measure, J. Complex Networks, 1 (2013), pp. 124–149.
[8] M. Benzi and C. Klymko, On the limiting behavior of parameter-dependent network centrality measures, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 686–706. · Zbl 1314.05113
[9] M. W. Berry, T. P. Chartier, K. R. Hutson, and A. N. Langville, Identifying influential edges in a directed network: Big events, upsets and non-transitivity, J. Complex Networks, 2 (2013), pp. 87–109.
[10] A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish, Improving network robustness by edge modification, Phys. A, 357 (2005), pp. 593–612.
[11] U. Brandes and T. Erlebach, eds., Network Analysis: Methodological Foundations, Lecture Notes in Comput. Sci. 3418, Springer, New York, 2005. · Zbl 1069.68001
[12] H. Chan, L. Akoglu, and H. Tong, Make it or break it: Manipulating robustness in large networks, in Proceedings of the 2014 SIAM International Conference on Data Mining, SIAM, Philadelphia, pp. 325–333.
[13] R. Cohen and S. Havlin, Complex Networks: Structure, Robustness and Function, Cambridge University Press, Cambridge, UK, 2010. · Zbl 1196.05092
[14] J. J. Crofts and D. J. Higham, A weighted communicability measure applied to complex brain networks, J. R. Soc. Interface, 6 (2009), pp. 411–414.
[15] T. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, \burlhttp://www.cise.ufl.edu/research/sparse/matrices/. · Zbl 1365.65123
[16] E. Estrada, Characterization of \(3\)D molecular structure, Chem. Phys. Lett., 319 (2000), 713–718.
[17] E. Estrada, Spectral scaling and good expansion properties in complex networks, Europhys. Lett., 73 (2006), pp. 649–655.
[18] E. Estrada, The Structure of Complex Networks. Theory and Applications, Oxford University Press, Oxford, UK, 2012. · Zbl 1267.05001
[19] E. Estrada and N. Hatano, Statistical–mechanical approach to subgraph centrality in complex networks, Chem. Phys. Lett., 439 (2007), pp. 247–251.
[20] E. Estrada and N. Hatano, Communicability in complex networks, Phys. Rev. E, 77 (2008), 036111.
[21] E. Estrada, N. Hatano, and M. Benzi, The physics of communicability in complex networks, Phys. Rep., 514 (2012), pp. 89–119.
[22] E. Estrada and J. A. Rodríguez-Velázquez, Subgraph centrality in complex networks, Phys. Rev. E, 71 (2005), 056103.
[23] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez, Network analysis via partial spectral factorization and Gauss quadrature, SIAM J. Sci. Comput., 35 (2013), pp. A2046–A2068. · Zbl 1362.65052
[24] H. Frank and I. Frisch, Analysis and design of survivable networks, IEEE Trans. Comm. Tech., 18 (1970), pp. 501–519.
[25] G. H. Golub and G. Meurant, Matrices, Moments and Quadrature with Applications, Princeton University Press, Princeton, NJ, 2010. · Zbl 1217.65056
[26] S. Güttel, \textttfunm_kryl: A Restart Code for the Evaluation of Matrix Functions, http://guettel.com/funm_kryl/.
[27] N. J. Higham, Function of Matrices. Theory and Computation, SIAM, Philadelphia, 2008.
[28] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc., 43 (2006), pp. 439–561. · Zbl 1147.68608
[29] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, UK, 2013. · Zbl 1267.15001
[30] L. Katz, A new status index derived from sociometric data analysis, Psychometrika, 18 (1953), pp. 39–43. · Zbl 0053.27606
[31] V. H. P. Louzada, F. Daolio, H. J. Herrmann, and M. Tomassini, Smart rewiring for network robustness, J. Complex Networks, 1 (2013), pp. 150–159.
[32] G. Meurant, MMQ Toolbox for MATLAB, http://gerard.meurant.pagesperso-orange.fr/.
[33] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
[34] M. E. J. Newman, Networks. An Introduction, Oxford University Press, Oxford, UK, 2010.
[35] A. P\i nar, J. Meza, V. Donde, and B. Lesieutre, Optimization strategies for the vulnerability analysis of the electric power grid, SIAM J. Optim., 20 (2010), pp. 1786–1810. · Zbl 1201.90138
[36] D. Puder, Expansion of Random Graphs: New Proofs, New Results, preprint, http://arxiv.org/abs/1212.5216arXiv:1212.5216v2, 2013. · Zbl 1320.05115
[37] B. Shargel, H. Sayama, I. R. Epstein, and Y. Bar-Yam, Optimization of robustness and connectivity in complex networks, Phys. Rev. Lett., 90 (2003), 068701.
[38] A. Taylor and D. J. Higham, CONTEST: Toolbox Files and Documentation, http://www.mathstat.strath.ac.uk/research/groups/numerical_analysis/contest/toolbox.
[39] A. Taylor and D. J. Higham, CONTEST: A controllable test matrix toolbox for MATLAB, ACM Trans. Math. Softw., 35 (2009), Art. 26.
[40] H. Tong, B. A. Prakash, T. Eliassi–Rad, M. Faloutsos, and C. Faloutsos, Gelling, and melting, large graphs by edge manipulation, in Proceedings of the 21st ACM International Conference on Information and Knowledge Management, ACM, New York, 2012, pp. 245–254.
[41] P. Van Mieghem, D. Stevanović, F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, and H. Wang, Decreasing the spectral radius of a graph by link removals, Phys. Rev. E, 84 (2011), 016101.
[42] D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature, 393 (1998), pp. 440–442. · Zbl 1368.05139
[43] J. Wu, M. Barahona, Y. Tan, and H. Deng, Natural connectivity of complex networks, Chinese Phys. Lett., 27 (2010), 078902.
[44] J. Wu, M. Barahona, Y. Tan, and H. Deng, Robustness of random graphs based on graph spectra, Chaos, 22 (2012), 043101. · Zbl 1319.05117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.