Philipowski, Robert; Thalmaier, Anton Heat equation in vector bundles with time-dependent metric. (English) Zbl 1429.58042 J. Math. Soc. Japan 67, No. 4, 1759-1769 (2015). Summary: We derive a stochastic representation formula for solutions of heat-type equations on vector bundles with time-dependent Riemannian metric over manifolds whose Riemannian metric is time-dependent as well. As a corollary we obtain a vanishing theorem for bounded ancient solutions under a curvature condition. Our results apply in particular to the case of differential forms. Cited in 1 Document MSC: 58J65 Diffusion processes and stochastic analysis on manifolds 58J35 Heat and other parabolic equation methods for PDEs on manifolds 53E20 Ricci flows Keywords:martingale; heat equation; vector bundle; geometric evolution; Ricci flow; Bochner Laplacian PDF BibTeX XML Cite \textit{R. Philipowski} and \textit{A. Thalmaier}, J. Math. Soc. Japan 67, No. 4, 1759--1769 (2015; Zbl 1429.58042) Full Text: DOI Euclid OpenURL References: [1] M. Arnaudon, K. A. Coulibaly and A. Thalmaier, Brownian motion with respect to a metric depending on time: definition, existence and applications to Ricci flow, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 773-778. · Zbl 1144.58019 [2] X. Chen, L.-J. Cheng and J. Mao, A probabilistic method for gradient estimates of some geometric flows, Stochastic Processes Appl., 125 (2015), 2295-2315. · Zbl 1315.53067 [3] K. A. Coulibaly-Pasquier, Brownian motion with respect to time-changing Riemannian metrics, applications to Ricci flow, Ann. Inst. H. Poincaré, Probab. Stat., 47 (2011), 515-538. · Zbl 1222.58030 [4] J. Eells and K. D. Elworthy, Wiener integration on certain manifolds, Problems in non-linear analysis (C.I.M.E., IV Ciclo, Varenna, 1970), Edizioni Cremonese, Rome, 1971, pp.,67-94. · Zbl 0226.58007 [5] J. Eells and K. D. Elworthy, Stochastic dynamical systems, Control theory and topics in functional analysis (Internat. Sem., Internat. Centre Theoret. Phys., Trieste, 1974), III , Internat. Atomic Energy Agency, Vienna, 1976, pp.,179-185. · Zbl 0355.60053 [6] K. D. Elworthy, Brownian motion and harmonic forms, Stochastic analysis and related topics (Silivri, 1986), Lecture Notes in Math., 1316 , Springer, Berlin, 1988, pp.,288-304. · Zbl 0645.60085 [7] K. D. Elworthy, X.-M. Li and S. Rosenberg, Bounded and \(L^2\) harmonic forms on universal covers, Geom. Funct. Anal., 8 (1998), 283-303. · Zbl 0898.53028 [8] K. D. Elworthy and S. Rosenberg, Generalized Bochner theorems and the spectrum of complete manifolds, Acta Appl. Math., 12 (1988), 1-33. · Zbl 0677.58046 [9] H. Guo, R. Philipowski and A. Thalmaier, A stochastic approach to the harmonic map heat flow on manifolds with time-dependent Riemannian metric, Stochastic Processes Appl., 124 (2014), 3535-3552. · Zbl 1297.53044 [10] H. Guo, R. Philipowski and A. Thalmaier, Martingales on manifolds with time-dependent connection, J. Theor. Probab., · Zbl 1331.53099 [11] E. P. Hsu, Stochastic Analysis on Manifolds, American Mathematical Society, Providence, RI, 2002. · Zbl 0994.58019 [12] K. Itô, The Brownian motion and tensor fields on Riemannian manifold, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp.,536-539. · Zbl 0116.36105 [13] K. Itô, Stochastic parallel displacement, Probabilistic methods in differential equations (Proc. Conf., Univ. Victoria, Victoria, 1974), Springer, Berlin, 1975, pp.,1-7. [14] Lecture Notes in Math., [15] K. Kuwada and R. Philipowski, Non-explosion of diffusion processes on manifolds with time-dependent metric, Math. Z., 268 (2011), 979-991. · Zbl 1226.53039 [16] K. Kuwada and R. Philipowski, Coupling of Brownian motions and Perelman’s \(\mathcal L\)-functional, J. Funct. Anal., 260 (2011), 2742-2766. · Zbl 1219.53067 [17] P. Malliavin, Formules de la moyenne, calcul de perturbations et théorèmes d’annulation pour les formes harmoniques, J. Funct. Anal., 17 (1974), 274-291. · Zbl 0425.58022 [18] P. Malliavin, Géométrie différentielle stochastique, Séminaire de Mathématiques Supérieures, 64 , Presses de l’Université de Montréal, Montreal, Que., 1978. [19] S.-H. Paeng, Brownian motion on manifolds with time-dependent metrics and stochastic completeness, J. Geom. Phys., 61 (2011), 940-946. · Zbl 1219.58018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.