×

zbMATH — the first resource for mathematics

Experimental investigation of the motion of a body with an axisymmetric base sliding on a rough plane. (English) Zbl 1343.70017
Regul. Chaotic Dyn. 20, No. 5, 518-541 (2015); translation in Nelineĭn. Din. 11, No. 3, 547-577 (2015).
Summary: In this paper we investigate the dynamics of a body with a flat base (cylinder) sliding on a horizontal rough plane. For analysis we use two approaches. In one of the approaches using a friction machine we determine the dependence of friction force on the velocity of motion of cylinders. In the other approach using a high-speed camera for video filming and the method of presentation of trajectories on a phase plane for analysis of results, we investigate the qualitative and quantitative behavior of the motion of cylinders on a horizontal plane. We compare the results obtained with theoretical and experimental results found earlier. In addition, we give a systematic review of the well-known experimental and theoretical results in this area.

MSC:
70F40 Problems involving a system of particles with friction
70E18 Motion of a rigid body in contact with a solid surface
70-05 Experimental work for problems pertaining to mechanics of particles and systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kragelskii, I.V., Friction and Wear, London: Butterworths, 1965.
[2] Bowden, F.P. and Tabor, D., The Friction and Lubrication of Solids, Oxford: Oxford Univ. Press, 2001. · Zbl 0987.74002
[3] Dowson, D., History of Tribology, London: Longman, 1979.
[4] Reynolds, O., On rolling friction, Philos. Trans. R. Soc. Lond., 166, 155-174, (1876)
[5] Coulomb, Ch.A., Theorie des machines simples, (1821), Paris
[6] Stribeck, R. H., Die wesentlichen eigenschaften der gleit- und rollenlager, Z. Ver. dt. Ing., 46, 1341-1348, (1902)
[7] Hydrodynamic Theory of Lubrication, L. S. Leibenzon (Ed.), Moscow: GTTI, 1934 (Russian).
[8] Euler, J. A., Recherches plus exactes sur l’effet des moulins à vent, Mem. Acad. Roy. Sci. Berlin, 12, 165-234, (1758)
[9] Coriolis, G., Théorie mathématique des effets du jeu de billard, Paris: Carilian-Goeury, 1835.
[10] Resal, H., Commentaire à la théorie mathématique du jeu de billard, J. Math. Pures Appl. (3), 9, 65-98, (1883)
[11] Appell, P., Sur le mouvement d’une bille de billard avec frottement de roulement, J. Math. Pures Appl. (6), 7, 85-96, (1911) · JFM 42.0774.04
[12] Borisov, A. V.; Mamaev, I. S.; Bizyaev, I. A., The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere, Regul. Chaotic Dyn., 18, 277-328, (2013) · Zbl 1367.70007
[13] Borisov, A.V.; Mamaev, I. S., Strange attractors in rattleback dynamics, Physics-Uspekhi, 46, 393-403, (2003)
[14] Borisov, A.V.; Mamaev, I. S., Strange attractors in rattleback dynamics, see also: Uspekhi Fiz. Nauk, 173, 407-418, (2003)
[15] Walker, G.T., On a curious dynamical property of celts, Proc. Cambridge Phil. Soc., 8, 305-306, (1895)
[16] Borisov, A.V.; Kazakov, A.O.; Kuznetsov, S.P., Nonlinear dynamics of the rattleback: A nonholonomic model, Physics-Uspekhi, 57, 453-460, (2014)
[17] Borisov, A.V.; Kazakov, A.O.; Kuznetsov, S.P., Nonlinear dynamics of the rattleback: A nonholonomic model, see also: Uspekhi Fiz. Nauk, 184, 493-500, (2014)
[18] Zhuravlev, V. Ph.; Klimov, D.M., Global motion of the celt, Mech. Solids, 43, 320-327, (2008)
[19] Zhuravlev, V. Ph.; Klimov, D.M., Global motion of the celt, see also: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 3, 8-16, (2008)
[20] Bobylev, D., Kugel, die ein gyroskop einschliesst und auf einer horizontalebene rollt, ohne dabei zu gleiten, Mat. Sb., 16, 544-581, (1892) · JFM 24.0892.01
[21] Zhukovsky, N. E., On gyroscopic ball of D.K.bobylev, 257-289, (1948)
[22] Borisov, A.V.; Jalnine, A.Yu.; Kuznetsov, S.P.; Sataev, I.R.; Sedova, J.V., Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback, Regul. Chaotic Dyn., 17, 512-532, (2012) · Zbl 1263.74021
[23] Markeev, A.P., On the dynamics of a solid on an absolutely rough plane, Regul. Chaotic Dyn., 7, 153-160, (2002) · Zbl 1058.70005
[24] Meijaard, J.P.; Papadopoulos, J.M.; Ruina, A.; Schwab, A. L., Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463, 1955-1982, (2007) · Zbl 1161.70006
[25] Takano, H., Spin reversal of a rattleback with viscous friction, Regul. Chaotic Dyn., 19, 81-99, (2014) · Zbl 1353.70014
[26] Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence, R.I.: AMS, 1972. · Zbl 0245.70011
[27] Zhuravlev, V. F., Notion of constraint in analytical mechanics, Nelin. Dinam., 8, 853-860, (2012) · Zbl 1255.65173
[28] Kireenkov, A. A.; Semendyaev, S. V.; Filatov, V. F., Experimental study of coupled two-dimensional models of sliding and spinning friction, Mech. Solids, 45, 921-930, (2010)
[29] Kireenkov, A. A.; Semendyaev, S. V.; Filatov, V. F., Experimental study of coupled two-dimensional models of sliding and spinning friction, see also: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 6, 192-202, (2010)
[30] Ciocci, M.C.; Langerock, B., Dynamics of the tippe top via Routhian reduction, Regul. Chaotic Dyn., 12, 602-614, (2007) · Zbl 1229.37049
[31] Zobova, A.A., Comments on the paper by M.C. ciocci, B. malengier, B. langerock, and B. grimonprez “towards a prototype of a spherical tippe top”, Regul. Chaotic Dyn., 17, 367-369, (2012) · Zbl 1253.70007
[32] Jensen, M.T.; Shegelski, M.R.A., The motion of curling rocks: experimental investigation and semi-phenomenological description, Can. J. Phys., 82, 1-19, (2004)
[33] Ivanov, A.P.; Shuvalov, N.D., On the motion of a heavy body with a circular base on a horizontal plane and riddles of curling, Regul. Chaotic Dyn., 17, 97-104, (2012) · Zbl 1252.70021
[34] Frohlich, C., What makes bowling balls hook?, Amer. J. Phys., 72, 1170-1177, (2004)
[35] Earnshaw, S., Dynamics, or An Elementary Treatise on Motion, 3rd ed., Cambridge: Deighton, 1844.
[36] Borisov, A. V.; Mamaev, I. S.; Bizyaev, I. A., The Jacobi integral in nonholonomic mechanics, Regul. Chaotic Dyn., 20, 383-400, (2015) · Zbl 1367.70036
[37] Borisov, A.V.; Mamaev, I. S.; Karavaev, Yu. L., On the loss of contact of the Euler disk, Nonlinear Dynam., 79, 2287-2294, (2015)
[38] Karavaev, Yu. L.; Kilin, A.A., The dynamics and control of a spherical robot with an internal omniwheel platform, Regul. Chaotic Dyn., 20, 134-152, (2015) · Zbl 1317.93192
[39] Borisov, A. V.; Kilin, A.A.; Mamaev, I. S., How to control chaplygin’s sphere using rotors, Regul. Chaotic Dyn., 17, 258-272, (2012) · Zbl 1264.37016
[40] Borisov, A. V.; Kilin, A.A.; Mamaev, I. S., How to control chaplygin’s sphere using rotors: 2, Regul. Chaotic Dyn., 18, 144-158, (2013) · Zbl 1303.37021
[41] Painlevé, P., Leçons sur le frottement, Paris: Hermann, 1895. · JFM 26.0781.01
[42] MacMillan, W. D., Dynamics of Rigid Bodies, New York: McGraw-Hill, 1936. · JFM 62.1510.05
[43] Borisov, A.V.; Erdakova, N.N.; Ivanova, T.B.; Mamaev, I. S., The dynamics of a body with an axisymmetric base sliding on a rough plane, Regul. Chaotic Dyn., 19, 607-634, (2014) · Zbl 1353.70038
[44] Weidman, P. D.; Malhotra, Ch.P., On the terminal motion of sliding spinning disks with uniform Coulomb friction, Phys. D, 233, 1-13, (2007) · Zbl 1188.70047
[45] Kozlov, V.V., Notes on dry friction and nonholonomic constraints, Nelin. Dinam., 6, 903-906, (2010)
[46] Kozlov, V.V., On the integration theory of equations of nonholonomic mechanics, Regul. Chaotic Dyn., 7, 191-176, (2002) · Zbl 1006.37040
[47] Ivanov, A.P., Comparative analysis of friction models in dynamics of a ball on a plane, Nelin. Dinam., 6, 907-912, (2010)
[48] Lévy-Leblond, J.-M., The ANAIS billiard table, Eur. J. Phys., 7, 252-258, (1986)
[49] Fufaev, N.A., A sphere rolling on a horizontal rotating plane, J. Appl. Math. Mech., 47, 27-29, (1983) · Zbl 0534.70008
[50] Fufaev, N.A., A sphere rolling on a horizontal rotating plane, see also: Prikl. Mat. Mekh., 47, 43-47, (1983)
[51] Fufaev, N.A., On the idealization of surface of contact in form of point contact in the problem of rolling, J. Appl. Math. Mech., 30, 78-84, (1966) · Zbl 0166.21602
[52] Fufaev, N.A., On the idealization of surface of contact in form of point contact in the problem of rolling, see also: Prikl. Mat. Mekh., 30, 67-72, (1966) · Zbl 0166.21602
[53] Voyenli, K.; Eriksen, E., On the motion of an ice hockey puck, Amer. J. Phys., 53, 1149-1153, (1985)
[54] Zhukovskii, N. E., Equilibrium conditions for a rigid body based on a fixed plane with a certain area and able to move along this plane with friction, 339-354, (1949)
[55] Hertz, H., Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt, 2nd ed., Leipzig: Barth, 1910. · JFM 41.0769.05
[56] Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Leipzig: Teubner, 1876. · JFM 08.0542.01
[57] Zhuravlev, V. F., On a model of dry friction in the problem of the rolling of rigid bodies, J. Appl. Math. Mech., 62, 705-710, (1998)
[58] Zhuravlev, V. F., On a model of dry friction in the problem of the rolling of rigid bodies, see also: Prikl. Mat. Mekh., 62, 762-767, (1998)
[59] Zhuravlev, V. Ph., Dynamics of a heavy homogeneous ball on a rough plane, Mech. Solids, 41, 1-5, (2006)
[60] Zhuravlev, V. Ph., Dynamics of a heavy homogeneous ball on a rough plane, see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 6, 3-9, (2006)
[61] Zhuravlev, V. Ph.; Klimov, D.M., On the dynamics of the Thompson top (tippe top) on the plane with real dry friction, Mech. Solids, 40, 117-127, (2005)
[62] Zhuravlev, V. Ph.; Klimov, D.M., On the dynamics of the Thompson top (tippe top) on the plane with real dry friction, see also: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 6, 157-168, (2005)
[63] Ivanov, A.P., A dynamically consistent model of the contact stresses in the plane motion of a rigid body, J. Appl. Math. Mech., 73, 134-144, (2009)
[64] Ivanov, A.P., A dynamically consistent model of the contact stresses in the plane motion of a rigid body, see also: Prikl. Mat. Mekh., 73, 189-203, (2009) · Zbl 1189.70012
[65] Ishlinsky, A.Yu.; Sokolov, B. N.; Chernousko, F. L., On motion of flat bodies with friction, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 4, 17-28, (1981)
[66] Kharlamov, P.V., A critique of some mathematical models of mechanical systems with differential constraints, J. Appl. Math. Mech., 56, 584-594, (1992)
[67] Kozlov, V.V., On the realization of constraints in dynamics, J. Appl. Math. Mech., 56, 594-600, (1992) · Zbl 0800.68185
[68] Kireenkov, A.A., On the motion of a homogeneous rotating disk along a plane in the case of combined friction, Mech. Solids, 37, 47-53, (2002)
[69] Kudra, G.; Awrejcewicz, J., Application and experimental validation of new computational models of friction forces and rolling resistance, Acta Mech., 226, 2831-2848, (2015) · Zbl 1329.74210
[70] Salnikova, T. V.; Treschev, D. V.; Gallyamov, S.R., On the motion of free disc on the rough horizontal plane, Nelin. Dinam., 8, 83-101, (2012)
[71] Samsonov, V.A., On friction in sliding and spinning of a body, vestn. mosk. univ., Ser. 1. Mat. Mekh., 2, 76-78, (1981)
[72] Formalev, V. F. and Reviznikov, D. L., Numerical Methods, Moscow: Fizmatlit, 2004 (Russian).
[73] Shiller, N. N., Note on the equilibrium of a rigid body under the action of friction on a part of its surface, Tr. otd. fiz. nauk, 5, 17-19, (1892)
[74] Boussinesq, J., Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques, Paris: Gauthier-Villars, 1885. · JFM 17.0952.01
[75] Contensou, P., Couplage entre frottement de pivotement et frottement de pivotement dans la théorie de latoupie, 201-216., (1963), Berlin · Zbl 0118.41001
[76] Farkas, Z.; Bartels, G.; Unger, T.; Wolf, D. E., Frictional coupling between sliding and spinning motion, Phys. Rev. Lett., 90, 4, (2003)
[77] Goyal, S., Planar Sliding of a Rigid Body with Dry Friction: Limit Surfaces and Dynamics of Motion: PhD Thesis, Ithaca,N.Y., Cornell University, 1989.
[78] Goyal, S.; Ruina, A.; Papadopoulos, J., Planar sliding with dry friction: part 2. dynamics of motion, Wear, 143, 331-352, (1991)
[79] Shegelski, M.R.A.; Holenstein, R., Rapidly rotating sliding cylinders: trajectories with large lateral displacements, Can. J. Phys., 80, 141-147, (2002)
[80] Zobova, A.A.; Treschev, D.V., Ball on a viscoelastic plane, Proc. Steklov Inst. Math., 281, 91-118, (2013) · Zbl 1293.35329
[81] Erismann, Th., Theorie und anwendungen des echten kugelgetriebes, Z. Angew. Math. Phys., 5, 355-388, (1954) · Zbl 0056.12103
[82] Kireenkov, A. A.; Semendyaev, S. V.; Filatov, V. F., Experimental study of coupled two-dimensional models of sliding and spinning friction, Mech. Solids, 45, 921-930, (2010)
[83] Cross, R., The rise and fall of spinning tops, Amer. J. Phys., 81, 280-289, (2013)
[84] Erdakova, N.N. and Ivanov, A.P., On a Mechanical Lens, arXiv:1509.01413 (2015).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.