Stephan, Ernst P. Boundary integral equations for screen problems in \({\mathbb{R}}^ 3\). (English) Zbl 0653.35016 Integral Equations Oper. Theory 10, 236-257 (1987). We present a new solution procedure for Helmholtz and Laplacian Neumann screen or Dirichlet screen problems in \({\mathbb{R}}^ 3\) via boundary integral equations of the first kind having as unknown the jump of the field or of its normal derivative, respectively, across the screen S. Under the assumption of local finite energy we show the equivalence of the integral equations and the original boundary value problems. Via the Wiener-Hopf method in the halfspace, localization and the calculus of pseudodifferential operators we derive existence, uniqueness and regularity results for the solution of our boundary integral equations together with its explicit behavior near the edge of the screen. We give Galerkin schemes based on our integral equations on S and obtain high convergence rates by using special singular elements besides regular splines as test and trial functions. Cited in 83 Documents MSC: 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 35J25 Boundary value problems for second-order elliptic equations 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 35B65 Smoothness and regularity of solutions to PDEs 35A35 Theoretical approximation in context of PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs Keywords:Helmholtz; Laplacian; Neumann screen; Dirichlet screen; boundary integral equations; local finite energy; Wiener-Hopf method; localization; calculus of pseudodifferential operators; existence; uniqueness; regularity; Galerkin schemes; convergence rates; singular elements PDF BibTeX XML Cite \textit{E. P. Stephan}, Integral Equations Oper. Theory 10, 236--257 (1987; Zbl 0653.35016) Full Text: DOI OpenURL References: [1] Copson, E. T.: On the problem of the electrified disc, Proc. Edin. Math. Soc.8, 14 (1947). [2] Costabel, M., Stephan, E.: A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl.106, (1985), 367-413. · Zbl 0597.35021 [3] Durand, M.: Layer potentials and boundary value problems for the Helmholtz equation in the complement of a thin obstacle, Math. Meth. Appl. Sci.5 (1983), 389-421. · Zbl 0527.76076 [4] Eskin, G. I.: Boundary problems for elliptic pseudodifferential operators, Transl. of Math. Mon., American Mathematical Society52, Providence Rhode Island (1981). · Zbl 0458.35002 [5] Hayashi, J.: The expansion theory of the Dirichlet problem for the Helmholtz equation for an open boundary, J. Math. Anal. Appl.61 (1977), 331-340. · Zbl 0367.35018 [6] Hayashi, J.: Three dimensional Dirichlet problem for the Helmholtz equation for an open boundary, Proc. Japan Acad.53, Ser. A (1977), 159-162. · Zbl 0381.03044 [7] Hildebrandt, St., Wienholtz, E.: Constructive proofs of representation theorems in separable Hilbert space, Comm. Pure Appl. Math.17 (1964), 369-373. · Zbl 0131.13401 [8] Hönl, H., Maue, A. W., Westpfahl, K.: Theorie der Beugung, ?Handbuch der Physik? 25/1, S. Flügge ed., Springer-Verlag, Berlin (1961). [9] Hörmander, L.: Linear Partial Differential Operators, Springer-Verlag, Berlin (1969). · Zbl 0175.39201 [10] Hsiao, G. C., Wendland, W. L.: A finite element method for some integral equations of the first kind, J. Math. Anal. Appl.58 (1977), 449-481. · Zbl 0352.45016 [11] Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications I, Berlin-Heidelberg-New York, Springer (1972). · Zbl 0223.35039 [12] MacCamy, R. C., Stephan, E.: Solution procedures for three-dimensional eddy current problems, J. Math. Anal. Appl.101, (1984), 348-379. · Zbl 0563.35054 [13] Nedelec, J. C.: Curved finite methods for the solution of singular integral equations on surfaces in IR3, Comp. Meth. Appl. Mech. Engin.8 (1976), 61-80. · Zbl 0333.45015 [14] Seeley, R.: Topics in pseudo-differential operators, Pseudo-Differential Operators, L. Nirenberg, ed., Roma, C. I. M. E., Cremonese (1969), 168-305. [15] Stephan, E.: Solution procedures for interface problems in acoustics and electromagnetics, in CISM, Courses and Lectures. No.277, Springer-Verlag, Wien-New York (1983), 291-348. · Zbl 0578.76078 [16] Stephan, E. P.: Boundary integral equations for mixed boundary value problems, screen and transmission problems in IR3, Habilitationsschrift (THD-Preprint848, Darmstadt) (1984). [17] Stephan, E. P.: Boundary integral equations for magnetic screens in IR3, Proceedings A of the Royal Society Edinburgh (1985), in print. [18] Stephan, E., Wendland, W. L.: Remarks to Galerkin and least squares methods with finite elements for general elliptic problems, Lecture Notes Math., Springer, Berlin,564 (1976), 461-471, Manuscripta Geodaetica1 (1976), 93-123. · Zbl 0345.35092 [19] Stephan, E., Wendland, W. L.: An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems, Applicable Analysis18 (1984), 183-219. · Zbl 0564.73087 [20] Taylor, M.: Pseudodifferential Operators, Princeton, University Press, 1981. [21] Wendland, W. L.: On the asymptotic convergence of some boundary element methods, Mafelap IV, J. Whiteman, ed., London-New York-San Francisco, Academic Press (1982), 281-312. [22] Wendland, W. L.: Boundary element methods and their asymptotic convergence in CISM, Courses and Lectures No.277, Springer Verlag Wien-New York (1983), 135-216. [23] Wilcox, C. H.: Scattering Theory for the d’Alembert Equation in Exterior Domains, Lecture Notes Math.442, Springer Verlag, Berlin-Heidelberg-New York (1969). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.