×

Algebraic quantum field theory and noncommutative moment problems. I. (English) Zbl 0653.46071

Let \({\mathcal S}\) denote Borchers’ test function algebra and \({\mathcal I}_ c\) the locality ideal. It is shown that the quotient algebra \({\mathcal S}/{\mathcal I}_ c\) admits a continuous \(C^*\)-norm and thus has a faithful representation by bounded operators on Hilbert space. This representation can be chosen to be Poincaré-covariant. Some further properties of the topology defined by the continuous \(C^*\)-norms on this algebra are also established.
Reviewer: C.Itzykson

MSC:

46N99 Miscellaneous applications of functional analysis
81T05 Axiomatic quantum field theory; operator algebras
46F05 Topological linear spaces of test functions, distributions and ultradistributions

Citations:

Zbl 0653.46072
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] A.S. Wightman and L. Gårding , Fields as operator valued distributions in relativistic quantum field theory . Ark. f Fys. , t. 28 , 1965 , p. 129 . Zbl 0138.45401 · Zbl 0138.45401
[2] R. Haag and D. Kastler , An algebraic approach to quantum field theory . J. Math. Phys. , t. 5 , 1964 , p. 848 . MR 165864 | Zbl 0139.46003 · Zbl 0139.46003
[3] H. Araki , Einführung in die axiomatische Quantenfeldtheorie . ETH Zürich 1961 - 1962 .
[4] H.J. Borchers and W. Zimmermann , On the self-adjointness of field operators . Nuovo Cim. , t. 31 , 1963 , p. 1047 . MR 161607 | Zbl 0151.44303 · Zbl 0151.44303
[5] W. Driessler and J. Fröhlich , The reconstruction of local observable algebras from the Euclidean Green’s functions of relativistic quantum field theory . Ann. Inst. H. Poincaré , t. 27 , 1977 , p. 221 . Numdam | MR 484123 | Zbl 0364.46051 · Zbl 0364.46051
[6] Fredenhagen and J. Hertel , Local algebras of observables and pointlike localized fields . Commun. Math. Phys. , t. 80 , 1981 , p. 555 . Article | MR 628511 | Zbl 0472.46051 · Zbl 0472.46051
[7] W. Driessler , S.J. Summers and E.H. Wichmann , On the connection between quantum fields and von Neumann algebras of local operators . Commun. Math. Phys. , t. 105 , 1986 , p. 49 . Article | MR 847127 | Zbl 0595.46062 · Zbl 0595.46062
[8] M. Dubois-Violette , A generalization of the classical moment problem on *-algebras with applications to relativistic quantum theory. I . Commun. Math. Phys. , t. 43 , 1975 , p. 225 . Article | MR 383100 | Zbl 0362.46044 · Zbl 0362.46044
[9] M. Dubois-Violette , A generalization of the classical moment problem on *-algebras with applications to relativistic quantum theory. II . Commun. Math. Phys. , t. 54 , 1977 , p. 151 . Article | MR 440369 | Zbl 0365.46060 · Zbl 0365.46060
[10] H.J. Borchers , On the structure of the algebra of field operators . Nuovo Cim ,. t. 24 , 1962 , p. 214 . MR 142320 | Zbl 0129.42205 · Zbl 0129.42205
[11] A. Uhlmann , Über die Definition der Quantenfelder nach Wightman und Haag . Wiss. Zeitschr., Karl Marx Univ. , t. 11 , 1962 , p. 213 . MR 141413 | Zbl 0119.43804 · Zbl 0119.43804
[12] G. Choquet , Lectures on Analysis , vol. 2 , New York , Benjamin , 1984 .
[13] H. Araki and G.A. Elliott , On the definition of C*-algebras . Publ. RIMS Kyoto , t. 9 , 1973 , p. 93 . Article | MR 355611 | Zbl 0272.46033 · Zbl 0272.46033
[14] J. Yngvason , On the locality ideal in the algebra of test functions for quantum fields . Publ. RIMS Kyoto , t. 20 , 1984 , p. 1063 . Article | MR 764348 | Zbl 0598.46047 · Zbl 0598.46047
[15] H.J. Borchers , C*-algebras and automorphism groups . Commun. Math. Phys. , t. 88 , 1983 , p. 95 . Article | MR 691200 | Zbl 0524.46047 · Zbl 0524.46047
[16] G.K. Pedersen , C*-algebras and their Automorphism Groups . London , New York , San Francisco , Academic Press , 1979 . MR 548006 | Zbl 0416.46043 · Zbl 0416.46043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.