×

Extremals of determinants of Laplacians. (English) Zbl 0653.53022

Let \(M\) be a compact Riemann surface with smooth boundary \(dM\). Let \(\Delta\) be the Laplacian with Dirichlet boundary condition. If \(\{\lambda_ n\}\) are the non-zero eigenvalues of \(\Delta\), then the zeta function \(\zeta (s,\Delta)=\sum_ n\lambda_ n^{-s}\) is holomorphic at \(s=0\) and - \(\zeta' (0,\Delta)\) is the functional determinant. This is a non-local spectral invariant. A metric \(g\) on \(M\) is said to be uniform if (i) \(dM=\emptyset\) and the metric \(g\) has constant curvature or (ii) \(dM \neq \emptyset\) and \(g\) is flat. The authors show that the uniform metric minimizes this inducing normal variation. Then structures are preserved by invariant, isometric infinitesimal variations.
Reviewer: Y.Muto

MSC:

53C20 Global Riemannian geometry, including pinching
58J50 Spectral problems; spectral geometry; scattering theory on manifolds

Citations:

Zbl 0653.53021
Full Text: DOI

References:

[1] Alvarez, O., Theory of strings with boundary, Nucl. Phys. B, 216, 125-184 (1983)
[2] Aubin, Th, Meilleurs constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courboure scalaire, J. Funct. Anal., 32, 148-174 (1979) · Zbl 0411.46019
[3] Berger, M. S., Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds, J. Differential Geom., 9, 325-332 (1971) · Zbl 0222.53042
[4] Beurling, A., Études sur un problème majoration, (Thèse (1933), Almquist and Wiksell: Almquist and Wiksell Uppsala) · JFM 59.1042.03
[5] Chang, S.-Y. A., Extremal functions in a sharp form of Sobolev inquality, (Proceedings, International Congress on Mathematics. Proceedings, International Congress on Mathematics, Berkeley, 1986. Proceedings, International Congress on Mathematics. Proceedings, International Congress on Mathematics, Berkeley, 1986, AMS (1987)), 715-723 · Zbl 0692.46029
[6] de Branges, L., A proof of the Bieberbach conjecture, Acta Math., 154, 137-152 (1985) · Zbl 0573.30014
[7] Duren, P. L., Univalent Functions (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0398.30010
[8] Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Differential Geom., 17, 255-306 (1982) · Zbl 0504.53034
[9] Kac, M., Can one hear the shape of a drum?, Amer. Math. Monthly, 73, 1-23 (1966) · Zbl 0139.05603
[10] Kazdan, J. L.; Warner, F. W., Curvature functions for 2-manifolds, Ann. of Math., 99, 14-47 (1974) · Zbl 0273.53034
[11] McKean, H. P.; Singer, I. M., Curvature and the eigenvalues of the Laplacian, J. Differential Geom., 1, 43-69 (1967) · Zbl 0198.44301
[12] Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20, 1077-1092 (1971) · Zbl 0213.13001
[13] Nehari, Z., On the principal frequencies of a membrane, Pacific J. Math., 8, 285-293 (1958) · Zbl 0086.19204
[14] Onofri, E., On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86, 321-326 (1982) · Zbl 0506.47031
[15] Peetre, J., A generalization of Courant’s nodal line theorem, Math. Scand., 5, 15-20 (1957) · Zbl 0077.30101
[16] Polyakov, A., Quantum geometry of Bosonic strings, Phys. Lett. B, 103, 207-210 (1981)
[17] Polyakov, A., Quantum geometry of Fermionic strings, Phys. Lett. B, 103, 211-213 (1981)
[18] Schiffer, M., Fredholm eigenvalues of multiply-connected domains, Pacific J. Math., 9, 211-269 (1959) · Zbl 0138.30004
[19] Schiffer, M.; Hawley, N. S., Connections and conformal mapping, Acta Math., 107, 175-274 (1962) · Zbl 0115.29301
[20] Taylor, M. E., Pseudodifferential Operators (1981), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0453.47026
[21] Trudinger, N. S., On imbedding into Orlicz spaces and some applications, J. Math. Mech., 17, 473-484 (1967) · Zbl 0163.36402
[22] Tsuji, M., Potential Theory in Modern Function Theory (1958), Chelsea: Chelsea New York · Zbl 0087.28401
[24] Weil, A., Elliptic Functions According to Eisenstein and Kronecker (1976), Springer-Verlag: Springer-Verlag New York · Zbl 0318.33004
[25] Wolpert, S., Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Comm. Math. Phys., 112, 283-315 (1987) · Zbl 0629.58029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.