zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extremals of determinants of Laplacians. (English) Zbl 0653.53022
Let M be a compact Riemann surface with smooth boundary dM. Let $\Delta$ be the Laplacian with Dirichlet boundary condition. If $\{\lambda\sb n\}$ are the non-zero eigenvalues of $\Delta$, then the zeta function $\zeta (s,\Delta)=\sum\sb n\lambda\sb n\sp{-s}$ is holomorphic at $s=0$ and - $\zeta$ ’(0,$\Delta)$ is the functional determinant. This is a non-local spectral invariant. A metric g on M is said to be uniform if (i) $dM=\emptyset$ and the metric g has constant curvature or (ii) dM$\ne \emptyset$ and g is flat. The authors show that the uniform metric minimizes ths inducing normal variation. Then structures are preserved by invariant, isometric infinitesimal variations.
Reviewer: Y.Muto

53C20Global Riemannian geometry, including pinching
58J50Spectral problems; spectral geometry; scattering theory
Full Text: DOI
[1] Alvarez, O.: Theory of strings with boundary. Nucl. phys. B 216, 125-184 (1983)
[2] Aubin, Th: Meilleurs constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courboure scalaire. J. funct. Anal. 32, 148-174 (1979) · Zbl 0411.46019
[3] Berger, M. S.: Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds. J. differential geom. 9, 325-332 (1971) · Zbl 0222.53042
[4] Beurling, A.: Études sur un problème majoration. Thèse (1933) · Zbl 0008.31802
[5] Chang, S. -Y.A: Extremal functions in a sharp form of Sobolev inquality. AMS, 715-723 (1987)
[6] De Branges, L.: A proof of the Bieberbach conjecture. Acta math. 154, 137-152 (1985) · Zbl 0573.30014
[7] Duren, P. L.: Univalent functions. (1983)
[8] Hamilton, R. S.: Three-manifolds with positive Ricci curvature. J. differential geom. 17, 255-306 (1982) · Zbl 0504.53034
[9] Kac, M.: Can one hear the shape of a drum?. Amer. math. Monthly 73, 1-23 (1966) · Zbl 0139.05603
[10] Kazdan, J. L.; Warner, F. W.: Curvature functions for 2-manifolds. Ann. of math. 99, 14-47 (1974) · Zbl 0273.53034
[11] Jr., H. P. Mckean; Singer, I. M.: Curvature and the eigenvalues of the Laplacian. J. differential geom. 1, 43-69 (1967) · Zbl 0198.44301
[12] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana univ. Math. J. 20, 1077-1092 (1971) · Zbl 0203.43701
[13] Nehari, Z.: On the principal frequencies of a membrane. Pacific J. Math. 8, 285-293 (1958) · Zbl 0086.19204
[14] Onofri, E.: On the positivity of the effective action in a theory of random surfaces. Comm. math. Phys. 86, 321-326 (1982) · Zbl 0506.47031
[15] Peetre, J.: A generalization of Courant’s nodal line theorem. Math. scand. 5, 15-20 (1957) · Zbl 0077.30101
[16] Polyakov, A.: Quantum geometry of bosonic strings. Phys. lett. B 103, 207-210 (1981)
[17] Polyakov, A.: Quantum geometry of fermionic strings. Phys. lett. B 103, 211-213 (1981)
[18] Schiffer, M.: Fredholm eigenvalues of multiply-connected domains. Pacific J. Math. 9, 211-269 (1959) · Zbl 0138.30004
[19] Schiffer, M.; Hawley, N. S.: Connections and conformal mapping. Acta math. 107, 175-274 (1962) · Zbl 0115.29301
[20] Taylor, M. E.: Pseudodifferential operators. (1981) · Zbl 0453.47026
[21] Trudinger, N. S.: On imbedding into Orlicz spaces and some applications. J. math. Mech. 17, 473-484 (1967) · Zbl 0163.36402
[22] Tsuji, M.: Potential theory in modern function theory. (1958) · Zbl 0087.28401
[23] I. Vardi, Determinants of Laplacians and multiple gamma functions, to appear. · Zbl 0641.33003
[24] Weil, A.: Elliptic functions according to Eisenstein and Kronecker. (1976) · Zbl 0318.33004
[25] Wolpert, S.: Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces. Comm. math. Phys. 112, 283-315 (1987) · Zbl 0629.58029