Invariant subsets of expanding mappings of the circle. (English) Zbl 0653.58031

Let f: \(S^ 1\to S^ 1\) be an expanding map of the circle. The author investigates entropy and geometric properties of invariant subsets \({\mathcal L}\subset {\mathcal S}^ 1\). Let us state one of the results. Let \({\mathcal K}_ m\) be the class of subsets \({\mathcal L}\) of the form \(L=\{x| \quad f^ nx\not\in {\mathcal U},\quad n=0,1,...\}\) where \({\mathcal U}\) is the union of m open intervals. Theorem 3. The Hausdorff dimension \({\mathcal H}{\mathcal D}({\mathcal L})\) continuously depends on \({\mathcal L}\in {\mathcal K}_ m\). Note that \({\mathcal H}{\mathcal D}({\mathcal L})\) is not a continuous functional on the space \({\mathcal K}\) of all invariant subsets \({\mathcal L}\subset {\mathcal S}^ 1\) since finite subsets are dense in \({\mathcal K}\).
Reviewer: M.Lyubich


37D99 Dynamical systems with hyperbolic behavior
Full Text: DOI


[1] Bowen, Publ. IHES 50 pp 11– (1980) · Zbl 0439.30032
[2] DOI: 10.1007/BF01762666 · Zbl 0299.54031
[3] Abramov, Amer. Math. Soc. Translations 49 pp 167– (1966) · Zbl 0185.21803
[4] Williams, Publ. IHES 50 pp 73– (1979) · Zbl 0484.58021
[5] Urba?ski, Ergod. Th. & Dynam. Sys. 6 pp none– (1986)
[6] Misiurewicz, Studia Math. 67 pp 45– (1980)
[7] DOI: 10.1007/BF02760884 · Zbl 0422.28015
[8] McCluskey, Ergod. Th. & Dynam. Sys. 3 pp 251– (1983)
[9] DOI: 10.1007/BF01223133 · Zbl 0399.28011
[10] DOI: 10.1007/BF01215004 · Zbl 0485.28016
[11] Kuratowski, Topology (1966)
[12] DOI: 10.1007/BF02761854 · Zbl 0456.28006
[13] Misiurewicz, Bull. Acad. Pol. Sci. 24 pp 1069– (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.