KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. (English) Zbl 0653.60077

If \(R_ t\) is the position of the rightmost particle at time t in a one- dimensional branching Brownian motion, \(u(t,x)=P(R_ t>x)\) is a solution of the KPP equation: \[ \partial u/\partial t=2^{-1}\partial^ 2u/\partial x^ 2+f(u) \] where \(f(u)=\alpha (1-u-g(1-u))\), g is the generating function of the reproduction law and \(\alpha\) the inverse of the mean lifetime; if \(m=g'(1)>1\) and \(g(0)=0\), it is known that: \[ R_ t/t\to^{P}c_ o=\sqrt{2\alpha (m-1)},\quad when\quad t\to +\infty. \] For the general KPP equation, we show limit theorems for \(u(t,ct+\xi)\), \(c>c_ 0\), \(\xi\in {\mathbb{R}}\), \(t\to +\infty\). Large deviations for \(R_ t\) and probabilities of presence of particles for the branching process are deduced: \[ P(Z_ t(]ct+\xi,+\infty [)>0)\sim_{t\to +\infty}Const.E Z_ t(]ct+\xi,+\infty [)\quad (c>c_ 0) \] (where \(Z_ t\) denotes the random point measure of particles living at time t), and a Yaglom type theorem is proved. The conditional distribution of the spatial tree, given \(\{Z_ t(]ct,+\infty [)>0\}\) is studied in the limit as \(t\to +\infty\).


60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60J85 Applications of branching processes
Full Text: DOI


[1] Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion and nerve propagation. Lect. Notes Math., vol. 446, p. 5–49. Berlin Heidelberg New York: Springer 1975 · Zbl 0325.35050
[2] Asmussen, S., Hering, H.: Branching processes. London: Birkhäuser 1983 · Zbl 0516.60095
[3] Athreya, K., Ney, P.: Branching processes. Berlin Heidelberg New York: Springer 1972 · Zbl 0259.60002
[4] Biggins, J.D.: Martingale convergence in the branching random walk. J. Appl. Probab. 14, 25–37 (1977) · Zbl 0356.60053
[5] Biggins, J.D.: Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14, 630–636 (1977) · Zbl 0373.60090
[6] Biggins, J.D.: Growth rates in the branching random walk. Z. Wahrscheinlichkeitsheor. Verw. Geb. 48, 17–34 (1979) · Zbl 0387.60092
[7] Bramson, M.: Maximal displacement of branching brownian motion. Comm. Pure Appl. Math. 31, 531–581 (1978) · Zbl 0378.60063
[8] Bramson, M.: The convergence of solutions of the Kolmogorov nonlinear diffusion equation to travelling waves. Memoirs Am. Math. Soc. 44, 1–190 (1983) · Zbl 0517.60083
[9] Chauvin, B.: Arbres et processus de branchement. Thèse de 3ème cycle, 1985. Université Paris VI
[10] Chauvin, B.: Arbres et processus de Bellman-Harris. Ann. Inst. Henri Poincare, Nouv. Ser., Sect. B 22, 209–232 (1986) · Zbl 0597.60078
[11] Chauvin, B.: Sur la propriété de branchement. Ann. Inst. Henri Poincaré, Nouv. Ser., Sect. B 22, 233–236 (1986) · Zbl 0597.60079
[12] Chauvin, B., Rouault, A.: Etude de l’équation KPP et du branchement brownien en zones souscritique et critique. Application aux arbres spatiaux. C.R. Acad. Sci., Paris Ser. I 304 19–22 (1987) · Zbl 0602.60075
[13] Chauvin, B., Rouault, A.: KPP equation and branching brownian motion: the critical case. Math. Nachr. to appear · Zbl 0653.60077
[14] Durret, R.: Brownian motion and martingales in analysis. Belmont: Wadsworth 1984
[15] Ericson, K.B.: Rate of expansion in an inhomogeneous branching process of Brownian particles. Z. Wahrscheinlichkeitstheor. Verw. Geb. 66, 129–140 (1984) · Zbl 0525.60083
[16] Fife, P.C., McLeod, J.B.: Mathematical aspects of reacting and diffusing systems. Lect. Notes Biomath., vol. 28. Berlin Heidelberg New York: Springer 1979 · Zbl 0403.92004
[17] Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 355–369 (1937) · JFM 63.1111.04
[18] Freidlin, M.: Functional, integration and p.d.e. Ann. Math. Stud. 109, (1985)
[19] Freidlin, M.: Limit theorems for large deviations and reaction-diffusion equations. Ann. Probab. 13, 639–675 (1985) · Zbl 0576.60070
[20] Gartner, J.: Locations of wave fronts for the multidimensional KPP equation and Brownian first exit densities. Math. Nachr. 105, 317–351 (1982) · Zbl 0501.60083
[21] Jagers, P.: Branching processes with biological applications. London New York: Wiley 1975 · Zbl 0356.60039
[22] Jagers P., Nerman, O.: The growth and composition of branching populations. Adv. Appl. Prob. 16, 221–259 (1984) · Zbl 0535.60075
[23] Kesten, H.: Branching brownian motion with absorption. Stochastic Processes Appl. 7, 9–47 (1978) · Zbl 0383.60077
[24] Kesten, H.: Subdiffusive behaviour of random walk in a random cluster. Ann. Inst. Henri Poincare, Nouv. Ser., Sect. B 22, 425–487 (1986) · Zbl 0632.60106
[25] Kolmogorov, A, Petrowski, I., Piscounov, N.: Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Mosc. Univ. Math. Bull. 1, 1–25 (1937)
[26] McKean, H. P.: Application of Brownian motion to the equation of Kolmogorov-Petrovski-Piscounov. Comm. Pure Appl. Math. 28, 323–331 (1975); 29, 553–554 (1976) · Zbl 0316.35053
[27] Maister, P. I.: Branching diffusion processes in an unbounded domain. Math. Sbornik 42, 357–373 (1982) · Zbl 0488.60092
[28] Neveu, J.: Arbres et processus de Galton-Watson. Ann. Inst. Henri Poincare, Nouv. Ser., Sect. B 22, 199–207 (1986) · Zbl 0601.60082
[29] Ogura Y.: A limit theorem for particle numbers in bounded domains of a branching diffusion process. Stochastic. Processes Appl. 14, 19–40 (1983) · Zbl 0494.60083
[30] Rouault, A.: Lois empiriques dans les processus de branchement spatiaux homogènes supercritiques. C.R. Acad. Sci., Paris Ser. I 299, 933–936 (1981) · Zbl 0469.60086
[31] Rouault, A.: Comportement asymptotique, d’un processus de branchement spatial en zone souscritique. C.R. Acad. Sci., Paris Ser. I 299, 887–890 (1981) · Zbl 0576.60080
[32] Rouault, A.: Probabilité de présence dans un processus de branchement spatial markovien. Ann. Inst. Henri Poincare, Nouv. Ser., Sect. B 23, 37–61 (1987) · Zbl 0611.60082
[33] Rouault, A.: Quelques études sur les processus de branchement. Dynamique de populations dans l’asymptotique des, grandes déviations. Thèse d’état Orsay (1985)
[34] Ruget, G.: Large deviations and more or less rare events in population dynamics. Lect. Notes Biomath. vol. 49, p. 338. Berlin Heidelberg New York: Springer 1981 · Zbl 0559.92020
[35] Titschmarsch, E.C.: The theory of functions. Oxford: Oxford University Press 1939
[36] Uchiyama, K.: The behaviour of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ. 18, 453–508 (1978) · Zbl 0408.35053
[37] Uchiyama, K.: Brownian first exit from and sojourn over one sided moving boundary and application. Z. Wahrscheinlichkeitstheor. Verw. Geb. 54, 75–116 (1980) · Zbl 0431.60080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.