×

On almost equitable uninorms. (English) Zbl 1340.03025

Summary: Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.

MSC:

03E72 Theory of fuzzy sets, etc.
03B52 Fuzzy logic; logic of vagueness

References:

[1] Bustince, H., Montero, J., Mesiar, R.: Migrativity of aggregation functions. Fuzzy Sets Syst. 160 (2009), 766-777. · Zbl 1186.68459 · doi:10.1016/j.fss.2008.09.018
[2] Baets, B. De: Idempotent uninorms. Eur. J. Oper. Res. 118 (1998), 631-642. · Zbl 1178.03070 · doi:10.1142/S021848850900570X
[3] Baets, B. De, Fodor, J.: Residual operators of uninorms. Soft Comput. 3 (1999), 89-100. · doi:10.1007/s005000050057
[4] Baets, B.De, Fodor, J.: Van Melle’s combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136. · Zbl 0928.03060 · doi:10.1016/S0165-0114(98)00265-6
[5] Baets, B. De, Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms. Seventh IFSA World Congress, Prague 1997, pp. 215-220.
[6] Hliněná, D., Kalina, M., Král’, P.: A class of implications related to Yager’s \(f-\)implications. Information Sciences 260 (2014), 171-184. · Zbl 1328.03024 · doi:10.1016/j.ins.2013.09.045
[7] Drygaś, P.: Discussion of the structure of uninorms. Kybernetika 41 (2005), 213-226. · Zbl 1249.03093
[8] Drygaś, P.: On the structure of continuous uninorms. Kybernetika 43 (2007), 183-196. · Zbl 1132.03349
[9] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157. · Zbl 1191.03039 · doi:10.1016/j.fss.2009.09.017
[10] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of uninorms locally internal in \(A(e)\) with continuous underlying operators. Fuzzy Sets Syst. · Zbl 1392.03050
[11] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994. · Zbl 0827.90002 · doi:10.1007/978-94-017-1648-2
[12] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 5 (1997), 411-427. · Zbl 1232.03015 · doi:10.1142/S0218488597000312
[13] Fodor, J., Baets, B. De: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99. · Zbl 1268.03027 · doi:10.1016/j.fss.2011.12.001
[14] Gabbay, D. M., Metcalfe, G.: Fuzzy logics based on \([0,1)\)-continuous uninorms. Arch. Math. Log. 46 (2007), 425-449. · Zbl 1128.03015 · doi:10.1007/s00153-007-0047-1
[15] Li, G., Liu, H.-W.: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm. Fuzzy Sets and Systems (2015). · Zbl 1392.03051 · doi:10.1016/j.fss.2015.01.019
[16] Li, G., Liu, H.-W., Fodor, J.: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm. Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 22 (2014), 591-604. · Zbl 1323.03079 · doi:10.1142/S0218488514500299
[17] Hu, S., Li, Z.: The structure of continuous uninorms. Fuzzy Sets Syst. 124 (2001), 43-52. · Zbl 0989.03058 · doi:10.1016/S0165-0114(00)00044-0
[18] Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: Migrative uninorms and nullnorms over t-norms and t-conorms. Fuzzy Sets and Syst. 261 (2015), 20-32. · Zbl 1360.68844 · doi:10.1016/j.fss.2014.05.012
[19] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. · Zbl 1087.20041 · doi:10.1017/S1446788700008065
[20] Petrík, M., Mesiar, R.: On the structure of special classes of uninorms. Fuzzy Sets Syst. 240 (2014), 22-38. · Zbl 1315.03099 · doi:10.1016/j.fss.2013.09.013
[21] Pradera, A.: Uninorms and non-contradiction. Lecture Notes in Computer Sciences, vol. 5285, (V. Torra and Y. Narukawa, Springer 2008, pp. 50-61. · Zbl 1178.68590 · doi:10.1007/978-3-540-88269-5_6
[22] Pradera, A., Trillas, E.: Aggregation, non-contradiction and excluded-middle. Mathware Soft Comput. XIII (2006), 189-201. · Zbl 1122.68128
[23] Pradera, A., Trillas, E.: Aggregation operators from the ancient NC and EM point of view. Kybernetika 42 (2006), 243-260. · Zbl 1249.03101
[24] Pradera, A., Beliakov, G., Bustince, H.: Aggregation functions and contradictory information. Fuzzy Sets Syst. 191 (2012), 41-61. · Zbl 1238.68162 · doi:10.1016/j.fss.2011.10.007
[25] Qin, F., Zhao, B.: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458. · Zbl 1077.03514 · doi:10.1016/j.fss.2005.04.010
[26] Ruiz, D., Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Syst. 14 (2006), 180-190. · Zbl 1355.03016 · doi:10.1109/tfuzz.2005.864087
[27] Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J. C.: Some remarks on the characterization of idempotent uninorms. IPMU 2010, LNAI 6178 (E. Hüllermeier, R. Kruse and F. Hoffmann, Springer-Verlag, Berlin - Heidelberg 2010, pp. 425-434. · doi:10.1007/978-3-642-14049-5_44
[28] Ruiz-Aguilera, D., Torrens, J.: S- and R-implications from uninorms continuous in \(]0,1[^{2}\) and their distributivity over uninorms. Fuzzy Sets Syst. 160 (2009), 832-852. · Zbl 1184.03014 · doi:10.1016/j.fss.2008.05.015
[29] Xie, A., Liu, H.: On the distributivity of uninorms over nullnorms. Fuzzy Sets Syst. 211 (2013), 62-72. · Zbl 1279.03047 · doi:10.1016/j.fss.2012.05.008
[30] Yager, R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. · Zbl 0871.04007 · doi:10.1016/0165-0114(95)00133-6
[31] Yager, R., Rybalov, A.: Bipolar aggregation using the Uninorms. Fuzzy Optim. Decis. Making 10 (2011), 59-70. · Zbl 1304.91068 · doi:10.1007/s10700-010-9096-8
[32] Yager, R.: Uninorms in fuzzy systems modeling. Fuzzy Sets Syst. 122 (2001), 167-175. · Zbl 0978.93007 · doi:10.1016/S0165-0114(00)00027-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.