zbMATH — the first resource for mathematics

Generation of Pareto optimal solutions using generalized DEA and PSO. (English) Zbl 1339.90310
Summary: Meta-heuristic methods such as particle swarm optimization and genetic algorithms have been applied in solving multi-objective optimization problems, and have been observed to be useful for generating a good approximation of Pareto optimal solutions. This paper suggests a multi-objective particle swarm optimization (MOPSO) utilizing generalized data envelopment analysis (GDEA) in order to decide adaptively parameters of MOPSO as well as to improve the convergence and the diversity in the search of solutions. In addition, the effectiveness of the proposed method using GDEA will be investigated by comparison with conventional methods through several numerical examples.

90C29 Multi-objective and goal programming
90C59 Approximation methods and heuristics in mathematical programming
Full Text: DOI
[1] Agrawal, S; Panigrahi, BK; Tiwari, MK, Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch, IEEE Trans. Evol. Comput., 12, 529-541, (2008)
[2] Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO algorithm based exclusively on Pareto dominance concepts. In: Proceedings of Evolutionary Multi-criterion Optimization (EMO 2005), vol. 3410, pp. 459-473 (2005) · Zbl 1109.68584
[3] Banker, RD; Charnes, A; Cooper, WW, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manag. Sci., 30, 1078-1092, (1984) · Zbl 0552.90055
[4] Charnes, A; Cooper, WW; Rhodes, E, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2, 429-444, (1978) · Zbl 0416.90080
[5] Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-objective Problems. Kluwer Academic, Dordrecht (2001) · Zbl 1130.90002
[6] Coello Coello, CA; Pulido, GT; Lechuga, MS, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput., 8, 256-279, (2004)
[7] Daneshyari, M; Yen, GG, Cultural-based multiobjective particle swarm optimization, IEEE Trans. Syst. Man Cybern. B Cybern., 41, 553-567, (2011)
[8] Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, London (2001) · Zbl 0970.90091
[9] Deb, K; Pratap, A; Agarwal, S; Meyarivan, T, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 182-197, (2002)
[10] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, Advanced Information and Knowledge Processing. Springer, Berlin, pp. 105-145 (2005) · Zbl 1078.90567
[11] Durillo, J.J., García-Nieto, J., Nebro, A.J., Coello Coello, C.A., Luna, F., Alba, E.: Multi-objective particle swarm optimizers: an experimental comparison. In: Proceedings of Evolutionary Multi-criterion Optimization (EMO 2009), Lecture Notes in Computer Science, vol. 5467, pp. 495-509 (2009)
[12] Fieldsend , J.E., Singh, S.: A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence. In: Proceedings of 2002 UK Workshop on Computational Intelligence, pp. 37-44 (2002)
[13] Guo, Y; Li, N; Zhang, H; Ye, T, Elitist vector evaluated particle swarm optimization for multi-mode resource leveling problems, J. Comput. Inf. Syst., 8, 3697-3705, (2012)
[14] Hu, X., Eberhart, R.: Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Proceedings of IEEE Congress Evolutionary Computation, vol. 2, pp. 1677-1681 (2002) · Zbl 0416.90080
[15] Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, Los Altos (2001)
[16] Kursawe, F.: A variant of evolution strategies for vector optimization. In: Proceedings of Parallel Problem Solving from Nature I (PPSN-I), pp. 193-197 (1991)
[17] Li, X.: A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Proceedings of Genetic and Evolutionary Computation (GECCO 2003), Lecture Notes in Computer Science, vol. 2723/2003, pp. 37-48 (2003) · Zbl 1028.68827
[18] Mussetta, M., Pirinoli, P., Selleri, S., Zich, R.E.: Meta-PSO for multi-objective EM problems. In: Nedjah, N., dos Santos Coelho, L., de Macedo Mourelle, L. (eds.) Multi-objective Swarm Intelligent Systems, Studies in Computational Intelligence, vol. 261, pp. 125-150 (2010)
[19] Moore, J., Chapman, R.: Application of particle swarm to multiobjective optimization. Technical report, Department of Computer Science and Software Engineering, Auburn University (1999) · Zbl 0552.90055
[20] Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of 2003 IEEE Swarm Intelligence Symposium, pp. 26-33 (2003)
[21] Nebro, A.J., Durillo, J.J., García-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: Proceedings of Evolutionary Multi-criterion Optimization (EMO 2009), pp. 495-509 (2009)
[22] Nakayama, H.: Aspiration level approach to interactive multi-objective programming and its applications. In: Pardalos, P.M., Siskos, Y., Zopounidis, C. (eds.) Advances in Multicriteria Analysis. Kluwer Academic, Dordrecht, pp. 147-174 (1995) · Zbl 0868.90101
[23] Pareto, V.: Manuale di Economia Politica, Societa Editrice Libraria. Milano (trans: Schwier, A.S.) Manual of Political Economy. Macmillan, New York (1906)
[24] Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multiobjective problems. In: Proceedings of 2002 ACM Symposium on Applied Computing, pp. 603-607 (2002) · Zbl 1018.68063
[25] Reyes Sierra, M., Coello Coello, C.A.: Improving PSO-based multi-objective optimization esing crowding, mutation and \(ϵ \)-dominance. In: Proceedings of Evolutionary Multi-Criterion Optimization (EMO 2005), vol. 3410, pp. 505-519 (2005) · Zbl 1109.68631
[26] Reyes-Sierra, M; Coello Coello, CA, Multiple objective particle swarm optimizers: a survey of the state-of-art, Int. J. Comput. Intell. Res., 2, 287-308, (2006)
[27] Salazar-Lechuga, M., Rowe, J.E.: Particle swarm optimization and fitness sharing to solve multi-objective optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2005), vol. 2, pp. 1204-1211 (2005)
[28] Santana, R.A., Pontes, M.R., Bastos-Filho, C.J.A.: A multiple objective particle swarm optimization approach using crowding distance and roulette wheel. In: Proceedings of IEEE 9th International Conference on Intelligent Systems Design and Applications, pp. 237-242 (2009)
[29] Tanaka, M., Watanabe, H., Furukawa, Y., Tanino, T.: GA-based decision support system for multicriteria optimization. In: Proceedings of the 1995 International Conference of Systems, Man, and Cybernetics, vol. 2, pp. 1556-1561 (1995)
[30] Toscano, G., Coello Coello, C.A.: Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In: Proceedings of Genetic and Evolutionary Computation (GECCO 2004), Lecture Notes in Computer Science, vol. 3102/2004, pp. 225-237 (2004)
[31] Toscano-Pulido, G., Coello Coello, C.A., Santana-Quintero, L.V.: EMOPSO: a multi-objective particle swarm optimizer with emphasis on efficiency. In: Proceedings of Evolutionary Multi-Criterion Optimization (EMO 2007), Lecture Notes in Computer Science, vol. 4403, pp. 272-285 (2007)
[32] Tulkens, H, On FDH efficiency: some methodological issues and applications to retail banking, courts, and urban transit, J. Prod. Anal., 4, 183-210, (1993)
[33] Wu, D; Ogawa, M; Suzuki, Y; Ogai, H; Kusaka, J, Modified multi-objective particle swarm optimization: application to optimization of diesel engine control parameter, SICE J. Control, Meas. Syst. Integr., 3, 315-323, (2011)
[34] Yun, YB; Nakayama, CH; Arakawa, M, Multiple criteria decision making with generalized DEA and an aspiration level method, Eur. J. Oper. Res., 158, 697-706, (2004) · Zbl 1056.90098
[35] Yun, YB; Nakayama, H; Tanino, T, A generalized model for data envelopment analysis, Eur. J. Oper. Res., 157, 87-105, (2004) · Zbl 1106.90350
[36] Yun, YB; Nakayama, CH; Tanino, CT; Arakawa, M, Generation of efficient frontiers in multi-objective optimization problems by generalized data envelopment analysis, Eur. J. Oper. Res., 129, 586-595, (2001) · Zbl 1125.90377
[37] Yun, YB; Yoon, CM; Nakayama, H, Genetic algorithm for multi-objective optimization using GDEA, Adv. Nat. Comput. III, 3612, 409-416, (2005)
[38] Zhang, Q., Mahfouf, M.: A modified PSO with a dynamically varying population and its application to the multi-objective optimal design of alloy steels. In: Proceedings of IEEE Conference on Evolutionary Computation (CEC 2009), pp. 3241-3248 (2009)
[39] Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Ph. D. thesis, Swiss Federal Institute of Technology (ETH), Shaker Verlag (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.