Berteloot, François; Thu, Ninh Van On the existence of parabolic actions in convex domains of \(\mathbb C^{k+1}\). (English) Zbl 1363.32016 Czech. Math. J. 65, No. 3, 579-585 (2015). Summary: We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric. MSC: 32M05 Complex Lie groups, group actions on complex spaces 32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables Keywords:convex domains; automorphism group PDFBibTeX XMLCite \textit{F. Berteloot} and \textit{N. Van Thu}, Czech. Math. J. 65, No. 3, 579--585 (2015; Zbl 1363.32016) Full Text: DOI Link References: [1] E. Bedford, S. Pinchuk: Domains in \(\mathbb{C}\)2 with noncompact automorphism groups. Indiana Univ. Math. J. 47 (1998), 199–222. · Zbl 0907.32012 · doi:10.1512/iumj.1998.47.1552 [2] E. Bedford, S. Pinchuk: Domains in \(\mathbb{C}\) n+1 with noncompact automorphism group. J. Geom. Anal. 1 (1991), 165–191. · Zbl 0733.32014 · doi:10.1007/BF02921302 [3] E. Bedford, S. I. Pinchuk: Domains in \(\mathbb{C}\)2 with noncompact groups of holomorphic automorphisms. Math. USSR, Sb. 63 (1989), 141–151; translation from Mat. Sb., Nov. Ser. 135 (177) (1988), 147–157, 271. (In Russian.) · Zbl 0668.32029 · doi:10.1070/SM1989v063n01ABEH003264 [4] F. Berteloot: Principe de Bloch et estimations de la métrique de Kobayashi des domaines de \(\mathbb{C}\)2. J. Geom. Anal. 13 (2003), 29–37. (In French.) · Zbl 1040.32011 · doi:10.1007/BF02930994 [5] F. Berteloot: Characterization of models in \(\mathbb{C}\)2 by their automorphism groups. Int. J. Math. 5 (1994), 619–634. · Zbl 0817.32010 · doi:10.1142/S0129167X94000322 [6] F. Berteloot, G. Coeuré: Domaines de \(\mathbb{C}\)2, pseudoconvexes et de type fini ayant un groupe non compact d’automorphismes. Ann. Inst. Fourier 41 (1991), 77–86. (In French.) · Zbl 0711.32016 · doi:10.5802/aif.1249 [7] J. Byun, H. Gaussier: On the compactness of the automorphism group of a domain. C. R., Math., Acad. Sci. Paris 341 (2005), 545–548. · Zbl 1086.32020 · doi:10.1016/j.crma.2005.09.018 [8] R. E. Greene, S. G. Krantz: Techniques for studying automorphisms of weakly pseudoconvex domains. Several Complex Variables: Proceedings of the Mittag-Leffler Institute, Stockholm, Sweden, 1987/1988 (J. E. Fornæss, ed.). Math. Notes 38, Princeton University Press, Princeton, 1993, pp. 389–410. · Zbl 0779.32017 [9] A. V. Isaev, S. G. Krantz: Domains with non-compact automorphism group: a survey. Adv. Math. 146 (1999), 1–38. · Zbl 1040.32019 · doi:10.1006/aima.1998.1821 [10] H. Kang: Holomorphic automorphisms of certain class of domains of infinite type. Tohoku Math. J. (2) 46 (1994), 435–442. · Zbl 0817.32011 · doi:10.2748/tmj/1178225723 [11] K.-T. Kim: On a boundary point repelling automorphism orbits. J. Math. Anal. Appl. 179 (1993), 463–482. · Zbl 0816.32015 · doi:10.1006/jmaa.1993.1362 [12] K.-T. Kim, S. G. Krantz: Some new results on domains in complex space with noncompact automorphism group. J. Math. Anal. Appl. 281 (2003), 417–424. · Zbl 1035.32019 · doi:10.1016/S0022-247X(03)00003-9 [13] K.-T. Kim, S. G. Krantz: Complex scaling and domains with non-compact automorphism group. Ill. J. Math. 45 (2001), 1273–1299. · Zbl 1065.32014 [14] M. Landucci: The automorphism group of domains with boundary points of infinite type. Ill. J. Math. 48 (2004), 875–885. · Zbl 1065.32016 [15] J.-P. Rosay: Sur une caractérisation de la boule parmi les domaines de \(\mathbb{C}\)n par son groupe d’automorphismes. Ann. Inst. Fourier 29 (1979), 91–97. (In French.) · Zbl 0402.32001 · doi:10.5802/aif.768 [16] B. Wong: Characterization of the unit ball in \(\mathbb{C}\)n by its automorphism group. Invent. Math. 41 (1977), 253–257. · Zbl 0385.32016 · doi:10.1007/BF01403050 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.