×

zbMATH — the first resource for mathematics

Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control. (English) Zbl 1363.93210
Summary: This paper considers a three-dimensional energy demand-supply system which typically demonstrates the relationship between the amount of energy supply and that of energy demand for the two regions in China. A delayed feedback controller is proposed to stabilize the system which was originally unstable even under some other controllers. The stability properties of the equilibrium points are subsequently analyzed and it is found that the Hopf bifurcation appears under some conditions. By using the center manifold theorem and normal form method, we obtain the explicit formulae revealing the properties of the periodic solutions of Hopf bifurcation to show stabilizing effects of the delayed feedback controller. Numerical simulations illustrate effectiveness of our results.

MSC:
93D15 Stabilization of systems by feedback
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
93C95 Application models in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, L., Han, Z. Z.: A survey on time-delayed feedback control for chaotic systems. Control Decision 19 (2004), 1-6.
[2] Huang, C. F., Cheng, K. H., Yan, J. J.: Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2784-2792. · doi:10.1016/j.cnsns.2008.09.017
[3] Lei, A. Z., Ji, L., Xu, W. G.: Delayed feedback control of a chemical chaotic model. Applied Math. Modelling 33 (2009), 677-682. · doi:10.1016/j.apm.2007.12.001
[4] Ott, E., Grebogi, C., Yorke, Y. A.: Controlling chaos. Physical Rev. Lett. 64 (1990), 1196-1199. · Zbl 0964.37502 · doi:10.1103/PhysRevLett.69.3479
[5] Ruan, S. G., Wei, J. J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 10 (2003), 863-874. · Zbl 1068.34072
[6] Sun, M., Tian, L. X.: An energy resources demand-supply system and its dynamical analysis. Chaos, Solitons and Fractals 32 (2007), 168-180. · Zbl 1133.91524 · doi:10.1016/j.chaos.2005.10.085
[7] Sun, M., Tian, L. X., Fu, Y., Wei, Q.: Dynamics and adaptive synchronization of the energy resource system. Chaos, Solitons and Fractals 31 (2007), 879-888. · Zbl 1149.34032 · doi:10.1016/j.chaos.2005.10.035
[8] Sun, M., Tian, L. X., Jia, Q.: Adaptive control and synchronization of a four-dimensional energy resources system with unknown parameters. Chaos, Solitons and Fractals 39 (2009), 1943-1949. · Zbl 1197.93100 · doi:10.1016/j.chaos.2007.06.117
[9] Sun, M., Tian, L. X., Yin, J.: Hopf bifurcation analysis of the energy resource chaotic system. Int. J. Nonlinear Sci. 1 (2006), 49-53. · Zbl 1394.37126
[10] Sun, M., Wang, X. F., Chen, Y., Tian, L. X.: Energy resources demand-supply system analysis and empirical research based on non-linear approach. Energy 36 (2011), 5460-5465. · doi:10.1016/j.energy.2011.07.036
[11] Sun, M., Tian, L. X., Xu, J.: Feedback control and adaptive control of the energy resource chaotic system. Chaos, Solitons and Fractals 32 (2007), 1725-1734. · Zbl 1129.93403 · doi:10.1016/j.chaos.2005.12.008
[12] Sun, M., Tian, L. X., Zeng, C. Y.: The energy resources system with parametric perturbations and its hyperchaos control. Nonlinear Analysis: Real World Appl. 10 (2009), 2620-2626. · Zbl 1163.34308 · doi:10.1016/j.nonrwa.2008.04.019
[13] Sun, Z. K., Xu, W., Yang, X. L., Fang, T.: Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback. Chaos, Solitons and Fractals 27 (2006), 705-714. · Zbl 1091.93008 · doi:10.1016/j.chaos.2005.04.041
[14] Tian, Y. Q., Zhu, J. D., Chen, G. R.: A survey on delayed feedback control of chaos. J. Control Theory Appl. 3 (2005), 311-319. · Zbl 1284.93113 · doi:10.1007/s11768-005-0018-1
[15] Wang, Z. L.: Chaos synchronization of an energy resource system based on linear control. Nonlinear Analysis: Real World Appl. 11 (2010), 3336-3343. · Zbl 1216.34061 · doi:10.1016/j.nonrwa.2009.11.026
[16] Wang, L. J., Chen, X. M., Sun, M., Tian, L X.: Stability of the energy supply-demand stochastic system. Mathematics in Practice and Theory 42 (2012), 105-111.
[17] Wang, M. G., Tian, L. X.: A new four-dimensional energy-saving andemission-reduction system and its linear feedback control. J. Systems Sci. Math. Sci. 32 (2012), 811-820. · Zbl 1289.91127
[18] Wang, Z., Hu, H. Y.: Stability switches of time-delayed dynamic systems with unknown parameters. J. Sound Vibration 233 (2000), 215-233. · Zbl 1237.93159 · doi:10.1006/jsvi.1999.2817
[19] Wang, X., Zhang, F. Q., Zhang, Y. J.: Hopf bifurcation of three species system with time delays. J. Systems Sci. Math. Sci. 30 (2010), 530-540. · Zbl 1240.34426
[20] Wei, J. J., Wang, H. B., Jiang, W. H.: Theory and Application of Delay Differential Equations. Sciences Press, Beijing 2012.
[21] Xin, B. G., Chen, T., Liu, Y. Q.: Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 4479-4486. · Zbl 1222.93108 · doi:10.1016/j.cnsns.2011.01.021
[22] Xu, C. J., Liao, M. X., He, X. F.: Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays. Int. J. Appl. Math. Computer Sci. 21 (2011), 97-107. · Zbl 1231.34151 · doi:10.2478/v10006-011-0007-0 · eudml:208040
[23] Ye, Z. Y., Yang, G., Deng, C. B.: Time-delay feedback control in a delayed dynamical chaos system and its applications. Chinese Physics B 20 (2011), 1-5. · doi:10.1088/1674-1056/20/1/010207
[24] Zou, E., Li, X. F., Chen, J. G.: Chaos Control and Optimization Applications. National University of Defence Technology Press, Changsha 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.