×

zbMATH — the first resource for mathematics

Imbedding theorems for the invariant subspaces of the backward shift operator. (English. Russian original) Zbl 0654.30027
J. Sov. Math. 42, No. 2, 1562-1572 (1988); translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 149, 38-51 (1986).
See the review in Zbl 0612.30032.

MSC:
30D55 \(H^p\)-classes (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs (1962). · Zbl 0117.34001
[2] N. K. Nikol’skii, Lectures on the Shift Operator [in Russian], Nauka, Moscow (1980).
[3] A. B. Aleksandrov, ”Invariant subspaces of the backward shift operator in the space HP (p (0, 1)),” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,92, 7–29 (1979). · Zbl 0429.47015
[4] B. Cohn, ”Carleson measures for functions orthogonal to invariant subspaces,” Pac. J. Math.,103, No. 2, 347–364 (1982). · Zbl 0509.30026
[5] P. L. Duren, Theory of Hp Spaces, Academic Press, New York (1970). · Zbl 0215.20203
[6] B. Erikke (B. J√∂ricke) and V. P. Khavin, ”Traces of harmonic functions and the comparison of the Lp norms of analytic functions,” Math. Nachr.,123, 225–254 (1985). · Zbl 0586.30030
[7] I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], GITTL, Moscow-Leningrad (1950).
[8] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York (1981). · Zbl 0469.30024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.