Fujiki, Akira Finite automorphism groups of complex tori of dimension two. (English) Zbl 0654.32015 Publ. Res. Inst. Math. Sci. 24, No. 1, 1-97 (1988). Let (T,G) be a pair consisting of a (possibly non-algebraic) complex torus T and a finite subgroup G of Aut(T), where Aut is the automorphism group as a complex Lie group. This paper gives a complete classification of such pairs with dim T\(=2\) up to isomorphisms. In particular G is considered modulo conjugacy in Aut(T). The results are very precise and summarized in many classification tables. Here only a rough outline of them will be sketched and a few sample results will be mentioned. The actions of G on \(H_ 1(T;{\mathbb{Z}})\) and H 0(T,\(\Theta)\) give two representations into \(GL_ 4({\mathbb{Z}})\) and \(GL_ 2({\mathbb{C}})\). They are called rational and complex representation types of (T,G) respectively. The strategy is first to classify all the possible compatible rational and complex representation types, next to determine the structure of the moduli space \({\mathcal M}\) consisting of isomorphism classes of (T,G) with fixed rational and complex representation types, and then to describe the structure of each member of M as explicitly as possible (\({\mathcal M}\) is a quotient of a homogeneous manifold by a discrete group, but the action may be bad and \({\mathcal M}\) may have no analytic structure). The author studies and classifies also rational endomorphism rings of T. The pair (T,G) is called special if the complex representation factors through \(SL_ 2({\mathbb{C}})\). Such pairs are studied more in detail. The lattice structure of H 2(T;\({\mathbb{Z}})\) is studied and several interesting relations are given. For example, a necessary and sufficient condition for a singular abelian surface T to admit a special action of a given group G is given in terms of the Neron-Severi lattice of T. Reviewer: T.Fujita Cited in 4 ReviewsCited in 35 Documents MSC: 32J15 Compact complex surfaces 32M05 Complex Lie groups, group actions on complex spaces 14C30 Transcendental methods, Hodge theory (algebro-geometric aspects) 22E10 General properties and structure of complex Lie groups 32G13 Complex-analytic moduli problems Keywords:complex torus; automorphism group; representations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Atiyah, M. F., Some examples of complex manifolds, Bonn. Math. Sch., 6 (1958). · Zbl 0080.37502 [2] Borevi£, Z. I., and Safarevifi, I. R., Number theory, Academic Press, 1966. [3] Calabi, E., Isometric families of Kahler structures, In: The Ghern Symposium 1979, Berlin-Heidelberg New York: Springer, 1980, 23-40. · Zbl 0453.53048 [4] Dickson, L. E., Algebren und ihre Zahlentheorie, Zurich, 1927. · JFM 53.0112.01 [5] Enriques, F., and Severi, F., Memoire sur les surfaces hyperelliptiques, Acta Math., 32 (1909), 283-392, 33 (1910), 321-403. · JFM 40.0684.01 [6] Fujiki, A., On primitively symplectic compact Kahler V-manifolds of dimension four, In: Cassification theory of algebraic and analytic manifolds, Progress in Math., 39, Birkhauser (1983), 71-250. · Zbl 0549.32018 [7] 9 On endomorphism rings of complex tori, in preparation. [8] Gottschling, E., Ober die Fixpunkte der Siegelschen Modulgruppe, Math. Ann., 143 (1961), 111-149. · Zbl 0099.28801 · doi:10.1007/BF01342975 [9] Gottschling, E., Uber die Fixpunktuntergruppen der Siegelschen Modulgruppe, Math. Ann., 143 (1961), 399-430. · Zbl 0099.28802 · doi:10.1007/BF01470754 [10] Hasse, H., Number theory, Grund. der Math. Wiss., 229, Springer, 1980. · Zbl 1038.11500 [11] Humphreys, J. E., Introduction to Lie algebras and representation theory, GTM, Berlin- Heidelberg-New York, Springer, 1972. · Zbl 0254.17004 [12] Katsura, T., Generalized Kummer surfaces and their unirationality in characteristic p, preprint. · Zbl 0664.14023 [13] Namikawa, Y., and Ueno, K., On fibers in families of curves of genus 2, I. Number theory, algebraic geometry, and commutative algebra, Kinokuniya, Tokyo, 1973, 297-371. [14] Nikulin, V. V., Finite automorphism groups of Kahler K3 surfaces, Trans. Moscow Math. Soc., 2 (1980), 71-135. · Zbl 0454.14017 [15] 1 Integral symmetric bilinear forms and some of their applications, Math. USSR Izvestija, 14 (1980), 103-167. · Zbl 0427.10014 · doi:10.1070/IM1980v014n01ABEH001060 [16] O’Mehara, O. T., Introduction to quadratic forms, Grund. der Math. Wiss., Springer, 1971. [17] Reiner, L, Maximal orders, Academic Press, London, 1975. [18] Serre, J.-P., A course in arithmetic, GTM, 7, Springer, 1973. · Zbl 0256.12001 [19] Shapiro, R. A., Pseudo-hermitian symmetric spaces, Comment. Math. Helv., 46 (1971), 529-548. · Zbl 0229.53043 · doi:10.1007/BF02566863 [20] Shimura, G., On analytic families of polarized abelian varieties and automorphic func- tions, Ann. of Math., 78 (1963), 149-193. · Zbl 0142.05402 · doi:10.2307/1970507 [21] , Introduction to the arithmetic theory of automorphic functions, Publ. of Math. Soc. Japan, Iwanami Publ. and Princeton Univ. Press, 1971. [22] Shioda, T., The period map of abelian surfaces, J. Fac. Sci. Univ. Tokyo, Sec. IA9 25 (1978), 47-59. · Zbl 0405.14021 [23] Shioda, T., and Mitani, N., Singular abelian surfaces and binary quadratic forms, Lecture Notes in Math., 412, Springer, 1974, 259-287. · Zbl 0302.14011 [24] Tokunaga, S., and Yoshida, M., Complex crystallographic groups I, J. Math. Soc. Japan, 34 (1982), 581-605. · Zbl 0488.20038 · doi:10.2969/jmsj/03440581 [25] Ueno, K., On fiber spaces of normally polarized abelian varieties of dimension 2, I-II., J. Fac. Sci. Univ. of Tokyo, 188 (1971), 37-95, 189 (1972), 163-199. · Zbl 0215.37303 [26] Vignera, M.-F., Arithmetique des algebres de quaternions. Lecture Notes in Math., 800, Springer, J980. [27] Yoshihara, H., Structure of complex tori with the automorphisms of maximal degree, TsukubaJ. Math., 4 (1980), 303-311. · Zbl 0491.32024 [28] Zarhin, Y. G., Hodge groups of K3 surfaces,/. Reine u. Angew. Math., 391 (1983), 193-220. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.