Robbiano, Luc Sur les zéros de solutions d’inégalités différentielles elliptiques. (On zeros of solutions of elliptic differential inequalities). (French) Zbl 0654.35036 Commun. Partial Differ. Equations 12, 903-919 (1987). It is shown that a function \(u\in C^{1+\delta}(\Omega)\), \(\delta >0\), for which \(| Au| \leq C_ k(| u| +| \nabla u|)\) on compact sets \(K\subset \Omega\), \(\Omega\) open in \({\mathbb{R}}^ m\), \(m\geq 2\), A being a second-order elliptic operator with Lipschitz continuous coefficients, satisfies: \(\forall \epsilon >0:\) \(H^{m- 2+\epsilon}(S)=0\), where \(S=\{x\in \Omega |\) \(u(x)=0\), \(\nabla u(x)=0\}\), \(H^ k\) denoting the k-dimensional Hausdorff measure, and \(H^{m-1+\epsilon}(\{x\in \Omega |\) \(u(x)=0\})=0\). Moreover, if \(u(0)=0\), \(\nabla u(0)=0\), \(u\neq 0\), there is \(n\geq 2\) with \(u=P_ n+\Gamma_ n\), where \(P_ n\) is a harmonic polynomial of degree n, \(P_ n\neq 0\), and \(\Gamma_ n\) satisfies: \(| \Gamma_ n(x)| \leq C| x|^{n+\delta /2}\), \(| \nabla \Gamma_ n(x)| \leq C| x|^{n-1+\delta /2}\) on \(\{\) \(x|\) \(| x| \leq 1\}\), provided \(A=\Delta +\sum^{m}_{i,j=1}\partial_ ia_{ij}(x)\partial_ x\) with \(a_{ij}(0)=0\). - This paper generalizes results from L. A. Caffarelli and A. Friedman [J. Differ. Equations 60, 420-433 (1985; Zbl 0593.35047)], in which \(A=\Delta\). Reviewer: R.Racke Cited in 6 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 35R45 Partial differential inequalities and systems of partial differential inequalities 35J15 Second-order elliptic equations 35B65 Smoothness and regularity of solutions to PDEs Keywords:Lipschitz continuous; Hausdorff measure; harmonic polynomial Citations:Zbl 0593.35047 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] S.Alinhac - Communication personnelle. [2] DOI: 10.2307/2374175 · Zbl 0425.35098 · doi:10.2307/2374175 [3] Aronszajn N., J. Math. Pures Appl. 36 pp 235– (1957) [4] DOI: 10.1002/cpa.3160080404 · Zbl 0066.08101 · doi:10.1002/cpa.3160080404 [5] DOI: 10.1016/0022-0396(79)90038-X · Zbl 0408.35083 · doi:10.1016/0022-0396(79)90038-X [6] DOI: 10.1016/0022-0396(85)90133-0 · Zbl 0593.35047 · doi:10.1016/0022-0396(85)90133-0 [7] Cordes H.O., Nachr. Akad. Götingen IIa Math. Phys. K1. 60 pp 239– (1956) [8] DOI: 10.1080/03605308308820262 · Zbl 0546.35023 · doi:10.1080/03605308308820262 [9] Pliš A., Bull. Acad. Pol. Sci. 11 pp 95– (1963) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.