zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A discrete choice model for ordered alternatives. (English) Zbl 0654.62093
A generalization of the multinomial logit (MNL) model is developed in which discrete alternatives are ordered so as to induce stochastic correlation among alternatives in close proximity. It is designed for situations where the alternatives are ordered, but is more flexible than previous ordered models. The model belongs to the generalized extreme value class introduced by {\it D. McFadden} [Modelling the choice of residential location. A. Karlqvist (ed.), Spatial interaction theory and planning models, 75-96 (1978)] and is therefore consistent with random utility maximization. A straightforward extension can handle cases where observations have been selected on the basis of a truncated choice set. A two-stage procedure using MNL computer software provides a specification test for MNL against either of these alternative models. The models’ pontinuities (pp. 627- 634). {\it M. V. Dharaneepathy} and {\it S. Gomathinayagam}; Finite element modelling of semi-submersibles (pp. 635-644). {\it S. K. Sane}, {\it C. S. Gurujee}, {\it A. R. Malpani} and {\it C. M. P. Fernandes}; Natural frequency analysis of compressor rotor blades (pp. 645-654). {\it S. K. Sane}, {\it C. S. Gurujee}, {\it A. R. Malpani}, {\it V. N. Sharma} and {\it C. M. P. Fernandes}; Natural frequency analysis of pretwisted plates (pp. 655-664). {\it S. C. Chakrabarti}, {\it G. C. Nayak} and {\it D. K. Paul}; Free vibration characteristics of prefabricated shear wall including foundation interaction (pp. 665-676). {\it P. S. Nair}, {\it M. Sambasiva Rao} and {\it S. Durvasula}; Vibration data reduction for design, analysis and testing of spacecraft (pp. 677-688). {\it C. V. Ramakrishnan} and {\it P. J. Sunder}; Comparison of block-stodala and static condensation algorithms for the linear flutter of axisymmetric shells (pp. 689-700). {\it B. G. Prakash} and {\it M. S. S. Prabhu}; Experience in the use of component mode synthesis in a project environment (pp. 701-710). {\it N. Ganesan} and {\it M. S. Dhotarad}; Vibration of thermally stressed skewed plates (pp. 711-720). {\it N. Ganesan} and {\it M. S. Dhotarad}; Nonlinear vibrations of thermally stressed plates by finite element method (pp. 721-732). DYNAMICS: {\it A. H. Shah}, {\it K. C. Wong} and {\it S. K. Datta}; Dynamic amplification of displacements and stresses in a buried tunnel (pp. 733-742). {\it P. Chellapandi}; Treatment of fluid structure interaction with FUSTIN code (pp. 743-752). {\it A. Das Gupta}; A dynamic material model from shock compression of geological materials for the ADINA code (pp. 753-760). {\it G. V. Surya Kumar} and {\it N. V. Raman}; Nonlinear dynamic analysis of guyed towers (pp. 761-770). {\it S. Haranath}, {\it N. Ganesan} and {\it B. V. A. Rao}; Dynamic behaviour of saw blade with applied damping treatment (pp. 771-780). {\it A. R. Chandrasekaran}, {\it S. K. Thakkar}, {\it D. K. Paul}, {\it N. C. Singhal}, {\it M. M. Tilak} and {\it U. S. P. Verma}; Seismic analysis of reactor building on a rocky site (pp. 781-792). {\it R. Patnaik}, {\it S. Prakash}, {\it H. S. Kushwaha} and {\it V. S. Gowaikar}; Seismic analysis of ventilation stack (pp. 793-798). {\it R. Singh}, {\it H. S. Kushwaha} and {\it B. K. Dutta}, Seismic response of cooling tower (pp. 799-806). {\it M. N. G. Elayathu} and {\it E. M. Abdul Salam}; Elastic response of a launch vehicle-payload-fairing to separation shock (pp. 807-814). {\it S. Vasudeva Rao} and {\it S. Rahamatulla}; Thermal stress analysis of turbine rotor under transients (pp. 815-826). {\it B. K. Raghu Prasad} and {\it A. R. Gopalakrishnan}; Finite element inelastic analysis of nuclear power plants subjected to dynamic loads (pp. 827-836). FIELD PROBLEMS: {\it S. K. Saxena} and {\it M. Geraminegad}; Coupled heat-moisture flow in saturated/unsaturated porous media (pp. 837-852). {\it B. S. Babur} and {\it E. Jones}; Finite element modelling for nonlinear diffusion equation (pp. 853-860). {\it S. G. Ravikumaur}, {\it K. N. Seetharamu} and {\it P. A. Aswathanarayana}; Analysis of network of heat exchangers using finite elements (pp. 861-870). {\it C. J. G. Chandra}, {\it K. N. Seetharamu} and {\it M. A. Parameswaran}; Finite element methods for investigation of air film in conveyor applications (pp. 871-880). {\it K. N. Shukla} and {\it M. J. Chacko}; Exact finite elements for parabolic boundary value problems (pp. 881-890). STRESS CONCENTRATION: {\it T. Krishnamurthy}, {\it T. S. Ramamurthy}, {\it K. Vijayakumar} and {\it B. Dattaguru}; Modified crack closure integral method for higher order finite elements (pp. 891-900). {\it K. P. Rao}, {\it R. K. Gupta}, {\it S. K. Radhamohan} and {\it S. Murugesan}; Finite element analysis of segment joints in long motor cases (pp. 901-908). {\it R. H. Dodds}, {\it S. T. Rolfe} and {\it G. Wellman}; Finite element predictions of J and CTOD for nonlinear fracture mechanics (pp. 909-922). {\it A. R. Kukreti}, {\it A. S. Khan} and {\it A. Kumar}; A three-dimensional finite element program for crack initiation and propagation in solids (pp. 923-932). {\it A. C. B. Naidu}, {\it T. Krishnamurthy}, {\it B. Dattaguru}, {\it T. S. Ramamurthy} and {\it A. K. Rao}; Special elements for analysis of fasteners in composite plates (pp. 933-942). {\it A. A. Mufti}, {\it N. G. Zamani}, {\it J. F. Porter}, {\it F. Taheri} and {\it L. T. Russell}; Prediction of fatigue crack propagation based on finite element fracture analysis (pp. 943-954). {\it R. Ramesh Kumar}, {\it K. Rajaiah}, {\it R. M. Belkune} and {\it Tarun Kant}; A finite element method for evaluating stresses around cutouts in shells (pp. 955-966). GRAPHICS: {\it M. Soerensen} and {\it G. Boehmler}; The missing link between CAD and FEM - does it exist ? (pp. 967-984). {\it N. Raghavan}, {\it S. G. Joglekar} and {\it M. C. Tandon}; Interactive graphics on a microcomputer for a design office (pp. 985-992). {\it B. S. Babu} and {\it G. R. Shevare}; Contour plotting using parametric bilinear patches (pp. 993-1000).

MSC:
62P20Applications of statistics to economics
WorldCat.org
Full Text: DOI