Nonlinear deformation waves in a geometrically and physically nonlinear viscoelastic cylindrical shell containing viscous incompressible fluid and surrounded by an elastic medium. (Russian. English summary) Zbl 1397.74112

Summary: The present study is devoted to analysis of nonlinear deformation of longitudinal waves in a cylindrical shell surrounded by an elastic medium and containing viscous incompressible fluid inside. The physical properties of the shell are defined by the equations of quadratic theory of viscoelasticity, which takes into account the linear elastic volume strain. The problem of wave propagation in viscoelastic and nonlinear thin-walled structures, including cylindrical shells, without interaction with the viscous incompressible fluid are considered from the perspective of earlier theory of solitons. The presence of fluid requires the development of new mathematical models and computer simulation of the processes occurring in the system.


74J30 Nonlinear waves in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)


Janet; LDA
Full Text: DOI


[1] [1] Землянухин А. И., Могилевич Л. И., Нелинейные волны в цилиндрических оболочках : солитоны, симметрии, эволюция, Изд-во Сарат. гос. техн. ун-та, Саратов, 1999, 132 с. [Zemlyanukhin A. I., Mogilevich L. I., Nonlinear Waves in Cylindrical Shells : Solitons, Symmetry, Evolution, Saratov State Tech. Univ. Press, Saratov, 1999, 132 pp. (in Russian)] · Zbl 0342.02023
[2] [2] Аршинов Г. А., Землянухин А. И., Могилевич Л. И., ”Двумерные уединенные волны в нелинейной вязкоупругой деформируемой среде”, Акустический журн., 46:1 (2000), 116–117 [Arshinov G. A., Zemlyanukhin A. I., Mogilevich L. I., ”Two-dimensional Solitary Waves in Nonlinear Viscoelastic Deformable Environment”, Acoustical Physics, 46:1 (2000), 116–117 (in Russian)] · Zbl 0342.02023
[3] [3] Аршинов Г. А., Могилевич Л. И., Статические и динамические задачи вязкоупругости, Изд-во Сарат. гос. аграрного ун-та, Саратов, 2000, 152 с. [Arshinov G. A., Mogilevich L. I., Static and Dynamic Problems of Viscoelasticity, Saratov State RGM Univ. Press, Saratov, 2000, 152 pp. (in Russian)] · Zbl 0342.02023
[4] [4] Лойцянский Л. Г., Механика жидкости и газа, Дрофа, М., 2003, 840 с. [Loitsyansky L. G., Fluid Mechanics, Drofa, M., 2003, 840 pp. (in Russian) · Zbl 0342.02023
[5] [5] Вольмир А. С., Нелинейная динамика пластин и оболочек, Наука, М., 1972, 328 с. · Zbl 0342.02023
[6] [6] Москвитин В. В., Сопротивление вязко-упругих материалов, Наука, М., 1972, 328 с. [Moskvitin V. V., Resistance Vyzko-elastic materials, Nauka, M., 1972, 328 pp. (in Russian)] · Zbl 0342.02023
[7] [7] Власов В. З., Леонтьев Н. Н., Балки, плиты, оболочки на упругом основании, Физматгиз, М., 1960, 490 с. [Vlasov V.\.Z., Leont’ev N. N., Beams, Plates and Shells on Elastic Foundation, Fizmatgiz, M., 1960, 490 pp. (in Russian)] · Zbl 0342.02023
[8] [8] Чивилихин С. А., Попов И. Ю., Гусаров В. В., ”Динамика скручивающихся нанотрубок в вязкой жидкости”, Докл. АН, 412:2 (2007), 201–203; Chivilikhin S. A., Popov I. Yu., Gusarov V. V., ”Dynamics of nanotube twisting in a viscous fluid”, Doklady Physics, 52:1 (2007), 60–62 · Zbl 1154.68045
[9] [9] Попов Ю. И., Розыгина О. А., Чивилихин С. А., Гусаров В. В., ”Солитоны в стенке нанотрубки и стоксово течение в ней”, Письма в ЖТФ, 36:18 (2010), 42–54; Popov I. Y., Rodygina O. A., Chivilikhin S. A., Gusarov V. V., ”Soliton in a nanotube wall and stokes flow in the nanotube”, Technical Physics Letters, 36:9 (2010), 852–855 · Zbl 0308.02032
[10] [10] Блинков Ю. А., Мозжилкин В. В., ”Генерация разностных схем для уравнения Бюргерса построением базисов Грe\ddot{}бнера”, Программирование, 32:2 (2006), 71–74 · Zbl 1101.65086
[11] [11] Gerdt V. P., Blinkov Yu. A., Mozzhilkin V. V., ”Gro\ddot{}bner Bases and Generation of Difference Schemes for Partial Differential Equations”, Symmetry, Integrability and Geometry : Methods and Applications, 2 (2006), 26 с., · Zbl 1094.68125
[12] [12] Gerdt V. P., Blinkov Yu. A., ”Gro\ddot{}bner Bases and Involution and difference schemes for the Navier–Stokes equations”, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, 5743, 2009, 94–105 · Zbl 1260.76008
[13] [13] Gerdt V. P., Robertz D., ”A Maple Package for Computing Gro\ddot{}bner Bases for Linear Recurrence Relations”, Nuclear Instruments and Methods in Physics Research, A559 (2006), 215–219
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.