×

Moments of traces of circular beta-ensembles. (English) Zbl 1388.60029

Summary: Let \(\theta_1,\dots ,\theta_n\) be random variables from Dyson’s circular \(\beta\)-ensemble with probability density function \(\mathrm{Const}\cdot \prod_{1\leq j < k \leq n} |e^{i\theta_j} - e^{i\theta_k}|^\beta\). For each \(n\geq 2\) and \(\beta >0\), we obtain some inequalities on \(\mathbb E[p_\mu(Z_n)\overline {p_\nu (Z_n)}]\), where \(Z_n = (e^{i\theta_1},\dots, e^{i\theta_n})\) and \(p_\mu\) is the power-sum symmetric function for partition \(\mu\). When \(\beta = 2\), our inequalities recover an identity by P. Diaconis and S. N. Evans [Trans. Am. Math. Soc. 353, No. 7, 2615–2633 (2001; Zbl 1008.15013)] for Haar-invariant unitary matrices. Further, we have the following: \[ \lim_{n\to\infty} \mathbb E[p_\mu(Z_n)\overline{p_\nu(Z_n)}] = \delta_{\mu\nu}\left({\frac 2\beta}\right)^{l(\mu)}z_\mu \] for any \(\beta> 0\), and partitions \(\mu, \nu\); \[ \lim_{m\to\infty} \mathbb E[|p_m(Z_n)|^2] = n \] for any \(\beta >0\) and \(n\geq 2\), where \(l(\mu)\) is the length of \(\mu\) and \(z_\mu\) depends explicitly on \(\mu\). These results apply to the three important ensembles: COE (\(\beta = 1\)), CUE (\(\beta = 2\)) and CSE (\(\beta = 4\)). We further examine the nonasymptotic behavior of \(\mathbb E[|p_m(Z_n)|^2]\) for \(\beta = 1, 4\). The central limit theorems of \(\sum_{j=1}^n g(e^{i\theta_j})\) are obtained when (i) \(g(z)\) is a polynomial and \(\beta >0\) is arbitrary, or (ii) \(g(z)\) has a Fourier expansion and \(\beta = 1, 4\). The main tool is the Jack function.

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
05E05 Symmetric functions and generalizations

Citations:

Zbl 1008.15013
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Blower, G. (2009). Random Matrices : High Dimensional Phenomena. London Mathematical Society Lecture Note Series 367 . Cambridge Univ. Press, Cambridge. · Zbl 1278.60003 · doi:10.1017/CBO9781139107129
[2] Collins, B. (2003). Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not. IMRN 17 953-982. · Zbl 1049.60091 · doi:10.1155/S107379280320917X
[3] Collins, B. and Matsumoto, S. (2009). On some properties of orthogonal Weingarten functions. J. Math. Phys. 50 113516, 14. · Zbl 1304.22007 · doi:10.1063/1.3251304
[4] Diaconis, P. and Evans, S. N. (2001). Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc. 353 2615-2633. · Zbl 1008.15013 · doi:10.1090/S0002-9947-01-02800-8
[5] Diaconis, P. and Shahshahani, M. (1994). On the eigenvalues of random matrices. J. Appl. Probab. 31A 49-62. · Zbl 0807.15015 · doi:10.2307/3214948
[6] Dong, Z., Jiang, T. and Li, D. (2012). Circular law and arc law for truncation of random unitary matrix. J. Math. Phys. 53 013301, 14. · Zbl 1273.15040 · doi:10.1063/1.3672885
[7] Durrett, R. (2010). Probability : Theory and Examples , 4th ed. Cambridge Univ. Press, Cambridge. · Zbl 1202.60001 · doi:10.1017/CBO9780511779398
[8] Dyson, F. J. (1962). Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3 140-156. · Zbl 0105.41604 · doi:10.1063/1.1703773
[9] Dyson, F. J. (1962). Statistical theory of the energy levels of complex systems. II. J. Math. Phys. 3 166-175. · Zbl 0105.41604 · doi:10.1063/1.1703773
[10] Dyson, F. J. (1962). Statistical theory of the energy levels of complex systems. III. J. Math. Phys. 3 1191-1198. · Zbl 0111.32703 · doi:10.1063/1.1703862
[11] Forrester, P. J. (2010). Log-Gases and Random Matrices. London Mathematical Society Monographs Series 34 . Princeton Univ. Press, Princeton, NJ. · Zbl 1217.82003
[12] Forrester, P. J. and Warnaar, S. O. (2008). The importance of the Selberg integral. Bull. Amer. Math. Soc. ( N.S. ) 45 489-534. · Zbl 1154.33002 · doi:10.1090/S0273-0979-08-01221-4
[13] Hardy, G. H., Littlewood, J. E. and Pólya, G. (1988). Inequalities . Cambridge Univ. Press, Cambridge. · Zbl 0634.26008
[14] Jiang, T. (2006). How many entries of a typical orthogonal matrix can be approximated by independent normals? Ann. Probab. 34 1497-1529. · Zbl 1107.15018 · doi:10.1214/009117906000000205
[15] Jiang, T. (2009). A variance formula related to quantum conductance. Phys. Lett. A 373 2117-2121. · Zbl 1229.81121 · doi:10.1016/j.physleta.2009.04.035
[16] Jiang, T. (2009). The entries of circular orthogonal ensembles. J. Math. Phys. 50 063302, 13. · Zbl 1216.60010 · doi:10.1063/1.3152217
[17] Jiang, T. (2010). The entries of Haar-invariant matrices from the classical compact groups. J. Theoret. Probab. 23 1227-1243. · Zbl 1204.60010 · doi:10.1007/s10959-009-0241-7
[18] Johansson, K. (1997). On random matrices from the compact classical groups. Ann. of Math. (2) 145 519-545. · Zbl 0105.41604 · doi:10.1063/1.1703773
[19] Killip, R. (2008). Gaussian fluctuations for \(\beta\) ensembles. Int. Math. Res. Not. IMRN 8 Art. ID rnn007, 19. · Zbl 1205.82081 · doi:10.1093/imrn/rnn007
[20] Macdonald, I. G. (1995). Symmetric Functions and Hall Polynomials , 2nd ed. The Clarendon Press, New York. · Zbl 0824.05059
[21] Matsumoto, S. and Novak, J. (2013). Jucys-Murphy elements and unitary matrix integrals. Int. Math. Res. Not. IMRN 2 362-397. · Zbl 1312.05143 · doi:10.1093/imrn/rnr267
[22] Mehta, M. L. (2004). Random Matrices , 3rd ed. Pure and Applied Mathematics ( Amsterdam ) 142 . Elsevier/Academic Press, Amsterdam. · Zbl 1107.15019
[23] Pastur, L. and Vasilchuk, V. (2004). On the moments of traces of matrices of classical groups. Comm. Math. Phys. 252 149-166. · Zbl 1102.60001 · doi:10.1007/s00220-004-1231-3
[24] Rains, E. M. (1997). High powers of random elements of compact Lie groups. Probab. Theory Related Fields 107 219-241. · Zbl 0868.60012 · doi:10.1007/s004400050084
[25] Stolz, M. (2005). On the Diaconis-Shahshahani method in random matrix theory. J. Algebraic Combin. 22 471-491. · Zbl 1098.15020 · doi:10.1007/s10801-005-4629-x
[26] Strauss, W. A. (1992). Partial Differential Equations : An Introduction . Wiley, New York. · Zbl 0817.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.